Arquivo da tag: Animais

The Big Search to Find Out Where Dogs Come From (New York Times)

An ancient canine skull at the Royal Belgian Institute of Natural Sciences. Scientists are still debating exactly when and where the ancient human-canine bond originated. ANDREW TESTA FOR THE NEW YORK TIMES


OXFORD, England — Before humans milked cows, herded goats or raised hogs, before they invented agriculture, or written language, before they had permanent homes, and most certainly before they had cats, they had dogs.

Or dogs had them, depending on how you view the human-canine arrangement. But scientists are still debating exactly when and where the ancient bond originated. And a large new study being run out of the University of Oxford here, with collaborators around the world, may soon provide some answers.

Scientists have come up with a broad picture of the origins of dogs. First off, researchers agree that they evolved from ancient wolves. Scientists once thought that some visionary hunter-gatherer nabbed a wolf puppy from its den one day and started raising tamer and tamer wolves, taking the first steps on the long road to leashes and flea collars. This is oversimplified, of course, but the essence of the idea is that people actively bred wolves to become dogs just the way they now breed dogs to be tiny or large, or to herd sheep.

The prevailing scientific opinion now, however, is that this origin story does not pass muster. Wolves are hard to tame, even as puppies, and many researchers find it much more plausible that dogs, in effect, invented themselves.

Arden Hulme-Beaman cutting a piece from an ancient skull for DNA testing at the Royal Belgian Institute of Natural Sciences in Brussels. ANDREW TESTA FOR THE NEW YORK TIMES

One reason for the conflicting theories, according to Greger Larson, a biologist in the archaeology department at the University of Oxford, is that dog genetics are a mess. In an interview at his office here in November, he noted that most dog breeds were invented in the 19th century during a period of dog obsession that he called “the giant whirlwind blender of the European crazy Victorian dog-breeding frenzy.”

That blender, as well as random breeding by dogs themselves, and interbreeding with wolves at different times over at least the last 15,000 years, created a “tomato soup” of dog genetics, for which the ingredients are very hard to identify, Dr. Larson said.

The way to find the recipe, Dr. Larson is convinced, is to create a large database of ancient DNA to add to the soup of modern canine genetics. And with a colleague, Keith Dobney at the University of Aberdeen, he has persuaded the Who’s Who of dog researchers to join a broad project, with about $2.5 million in funding from the Natural Environment Research Council in England and the European Research Council, to analyze ancient bones and their DNA.

Robert Wayne, an evolutionary biologist at U.C.L.A. who studies the origin of dogs and is part of the research, said, “There’s hardly a person working in canine genetics that’s not working on that project.”

A wolf on display at the Oxford Museum of Natural History. ANDREW TESTA FOR THE NEW YORK TIMES

That is something of a triumph, given the many competing theories in this field. “Almost every group has a different origination hypothesis,” he said.

But Dr. Larson has sold them all on the simple notion that the more data they have, the more cooperative the effort is, the better the answers are going to be. His personality has been crucial to promoting the team effort, said Dr. Wayne, who described Dr. Larson as “very outgoing, gregarious.” Also, Dr. Wayne added, “He has managed not to alienate anyone.”

Scientists at museums and universities who are part of the project are opening up their collections. So to gather data, Dr. Larson and his team at Oxford have traveled the world, collecting tiny samples of bone and measurements of teeth, jaws and occasionally nearly complete skulls from old and recent dogs, wolves and canids that could fall into either category. The collection phase is almost done, said Dr. Larson, who expects to end up with DNA from about 1,500 samples, and photographs and detailed measurements of several thousand.

Scientific papers will start to emerge this year from the work, some originating in Oxford, and some from other institutions, all the work of many collaborators.

Dr. Larson is gambling that the project will be able to determine whether the domestication process occurred closer to 15,000 or 30,000 years ago, and in what region it took place. That’s not quite the date, GPS location and name of the ancient hunter that some dog lovers might hope for.

But it would be a major achievement in the world of canine science, and a landmark in the analysis of ancient DNA to show evolution, migrations and descent, much as studies of ancient hominid DNA have shown how ancient humans populated the globe and interbred with Neanderthals.

And why care about the domestication of dogs, beyond the obsessive interest so many people have in their pets? The emergence of dogs may have been a watershed.

“Maybe dog domestication on some level kicks off this whole change in the way that humans are involved and responding to and interacting with their environment,” he added. “I don’t think that’s outlandish.”

Shepherding the Research

Dr. Larson is no stranger to widely varying points of view. He is an American, but recently became a British citizen as well. His parents are American and he visited the United States often as a child, but he was born in Bahrain and grew up in Turkey and Japan, places where his parents were teaching in schools on American military bases.

He graduated from Claremont McKenna College in California and received his Ph.D. at Oxford. In between college and graduate studies, he spent a year searching for the bed of an ancient river in Turkmenistan, and another couple of years setting up an environmental consulting office in Azerbaijan. He had an interest in science as an undergraduate, and some background from a college major in environment, economics and politics, but no set career plans. Instead, his career grew out of intense curiosity, a knack for making friends and a willingness to jump at an opportunity, like the time he managed to tag along on an archaeological dig.

He was staying in Ashgabat, Turkmenistan, and a local man who had helped him rent an old Soviet truck to explore the desert told him some Westerners were arriving to go on a dig, so he wangled his way onto one of the trucks.

“I think everybody there thought I was with somebody else,” Dr. Larson said.

By the time the group stopped to rest and someone asked him who he was, it was too late to question whether he really belonged. “I was a complete stowaway,” he said.

But he could move dirt and speak Russian, and he had some recently acquired expertise — in college drinking games — that he said was in great demand at night. By luck, he said, the researchers on the dig turned out to be “the great and the good of British neolithic archaeology.” One of them was Chris Gosden, the chairman of European Archaeology at Oxford, who later invited him to do a one-year master’s degree in archaeology at Oxford. That eventually led to a Ph.D. program after he spent some time in graduate school in the United States.

The current project began when he became fed up with the lack of ancient DNA evidence in papers about the origin of dogs. He called Dr. Dobney, of the University of Aberdeen in 2011, and said, “We’re doing dogs.”

After receiving the grant from the council in England, he and Dr. Dobney organized a conference in Aberdeen, Scotland, to gather as many people involved in researching dog origins as they could. His pitch to the group was that despite their different points of view, everyone was interested in the best possible evidence, no matter where it led.

“If we have to eat crow, we eat crow,” he said. “It’s science.”

A 32,000-Year-Old Skull

Mietje Germonpré, a paleontologist at the Royal Belgian Institute of Natural Sciences, is one of the many scientists participating in the dog project. She was one of a number of authors on a 2013 paper in Science that identified a skull about 32,000 years old from a Belgian cave in Goyet as an early dog. Dr. Wayne at U.C.L.A. was the senior author on the paper and Olaf Thalmann from the University of Turku in Finland was the first author.

It is typical of Dr. Larson’s dog project that although he disagreed with the findings of the paper, arguing that the evidence just wasn’t there to call the Goyet skull a dog, all of the authors of the paper are working on the larger project with him.

In November in Brussels, holding the priceless fossil, Dr. Germonpré pointed out the wide skull, crowded teeth and short snout of the ancient skull — all indicators to her that it was not a wolf.

“To me, it’s a dog,” she said. Studies of mitochondrial DNA, passed down from females only, also indicated the skull was not a wolf, according to the 2013 paper.

Dr. Germonpré said she thinks dogs were domesticated some time before this animal died, and she leans toward the idea that humans intentionally bred them from wolves.

She holds up another piece of evidence, a reconstruction of a 30,000-year-old canid skull found near Predmostí, in the Czech Republic, with a bone in its mouth. She reported in 2014 that this was a dog. And she says the bone is part of evidence the animal was buried with care. “We think it was deliberately put there,” she said.

But she recognizes these claims are controversial and is willing, like the rest of the world of canine science, to risk damage to the fossils themselves to get more information on not just the mitochondrial DNA but also the nuclear DNA.

To minimize that risk, she talked with Ardern Hulme-Beaman, a postdoctoral researcher with the Oxford team, about where to cut into it. He was nearing the end of months of traveling to Russia, Turkey, the United States and all over Europe to take samples of canid jaws and skulls.

He and Allowyn Evin, now with the National Center for Scientific Research in Montpelier, France, also took many photographs of each jaw and skull to do geometric morphometrics. Software processes detailed photographs from every angle into 3-D recreations that provide much more information on the shape of a bone than length and width measurements.

Dr. Germonpré and Dr. Hulme-Beaman agreed on a spot in the interior of the skull to cut. In the laboratory, he used a small electric drill with a cutting blade to remove a chunk the size of a bit of chopped walnut. An acrid, burning smell indicated that organic material was intact within the bone — a good sign for the potential retrieval of DNA.

Back in Oxford, researchers will attempt to use the most current techniques to get as much DNA as possible out of the sample. There is no stretch of code that says “wolf” or “dog,” any more than there is a single skull feature that defines a category. What geneticists try to establish is how different the DNA of one animal is from another. Adding ancient DNA gives many more points of reference over a long time span.

Dr. Larson hopes that he and his collaborators will be able to identify a section of DNA in some ancient wolves that was passed on to more doglike descendants and eventually to modern dogs. And he hopes they will be able to identify changes in the skulls or jaws of those wolves that show shifts to more doglike shapes, helping to narrow the origins of domestication.

The usual assumption about domestic animals is that the process of taming and breeding them happened once. But that’s not necessarily so. Dr. Larson and Dr. Dobney showed that pigs were domesticated twice, once in Anatolia and once in China. The same could be true of dogs.

Only the Beginning

Although the gathering of old bones is almost done, Dr. Larson is still negotiating with Chinese researchers for samples from that part of the world, which he says are necessary. But he hopes they will come.

If all goes well, said Dr. Larson, the project will publish a flagship paper from all of the participants describing their general findings. And over the next couple of years, researchers, all using the common data, will continue to publish separate findings.

Other large collaborative efforts are brewing, as well. Dr. Wayne, at U.C.L.A., said that a group in China was forming with the goal of sequencing 10,000 dog genomes. He and Dr. Larson are part of that group.

Last fall, Dr. Larson was becoming more excited with each new bit of data, but not yet ready to tip his hand about what conclusions the data may warrant, or how significant they will be.

But he is growing increasingly confident that they will find what they want, and come close to settling the thorny question of when and where the tearing power of a wolf jaw first gave way to the persuasive force of a nudge from a dog’s cold nose.

“I’m starting to drink my own Kool-Aid,” he said.

Pangolim aparece em Nkobe: pode anunciar chuvas na província de Maputo (TVM)

Domingo, 17 Janeiro 2016 14:27
Escrito por  Redacção


Um Pangolim foi encontrado na manhã deste sábado no bairro Nkobe na Cidade da Matola Província de Maputo.

Segundo as autoridades tradicionais, o animal anuncia muita chuva e produtividade nos próximos tempos neste ponto do país.

O mamífero foi encontrado no bairro Nkobe na Província de Maputo, o mesmo foi transportado para a residência da Rainha, onde os régulos realizaram uma cerimónia tradicional com vista interpretação da mensagem que o animal trazia para a população da Cidade da Matola.

Realizada a cerimónia tradicional, a Rainha disse tratar-se de um animal cujo aparecimento tem explicação entre as quais se destaca a queda da chuva e cultivo de comida em abundância.

Dirigentes da Cidade da Matola estiveram no local para testemunhar o acto e estes consideram que o cenário da seca que se vive na Província de Maputo poderá ser ultrapassado.

Segundo as autoridades tradicionais esta é a segunda vez que um Pangolim é encontrado na urbe, o primeiro apareceu em dois mil e catorze.

Army ants’ ‘living’ bridges span collective intelligence, ‘swarm’ robotics (Science Daily)

Date: November 24, 2015

Source: Princeton University

Summary: Researchers report for the first time that the ‘living’ bridges army ants of the species Eciton hamatum build with their bodies are more sophisticated than scientists knew. The ants automatically assemble with a level of collective intelligence that could provide new insights into animal behavior and even help in the development of intuitive robots that can cooperate as a group.

Researchers from Princeton University and the New Jersey Institute of Technology report for the first time that the “living” bridges army ants of the species Eciton hamatum (pictured) build with their bodies are more sophisticated than scientists knew. The ants automatically assemble with a level of collective intelligence that could provide new insights into animal behavior and even help in the development of intuitive robots that can cooperate as a group. Credit: Courtesy of Matthew Lutz, Princeton University, and Chris Reid, University of Sydney

 Columns of workers penetrate the forest, furiously gathering as much food and supplies as they can. They are a massive army that living things know to avoid, and that few natural obstacles can waylay. So determined are these legions that should a chasm or gap disrupt the most direct path to their spoils they simply build a new path — out of themselves.

Without any orders or direction, individuals from the rank and file instinctively stretch across the opening, clinging to one another as their comrades-in-arms swarm across their bodies. But this is no force of superhumans. They are army ants of the species Eciton hamatum, which form “living” bridges across breaks and gaps in the forest floor that allow their famously large raiding swarms to travel efficiently.

Researchers from Princeton University and the New Jersey Institute of Technology (NJIT) report for the first time that these structures are more sophisticated than scientists knew. The ants exhibit a level of collective intelligence that could provide new insights into animal behavior and even help in the development of intuitive robots that can cooperate as a group, the researchers said.

Ants of E. hamatum automatically form living bridges without any oversight from a “lead” ant, the researchers report in the journal Proceedings of the National Academy of the Sciences. The action of each individual coalesces into a group unit that can adapt to the terrain and also operates by a clear cost-benefit ratio. The ants will create a path over an open space up to the point when too many workers are being diverted from collecting food and prey.

“These ants are performing a collective computation. At the level of the entire colony, they’re saying they can afford this many ants locked up in this bridge, but no more than that,” said co-first author Matthew Lutz, a graduate student in Princeton’s Department of Ecology and Evolutionary Biology.

“There’s no single ant overseeing the decision, they’re making that calculation as a colony,” Lutz said. “Thinking about this cost-benefit framework might be a new insight that can be applied to other animal structures that people haven’t thought of before.”

The research could help explain how large groups of animals balance cost and benefit, about which little is known, said co-author Iain Couzin, a Princeton visiting senior research scholar in ecology and evolutionary biology, and director of the Max Planck Institute for Ornithology and chair of biodiversity and collective behavior at the University of Konstanz in Germany.

Previous studies have shown that single creatures use “rules of thumb” to weigh cost-and-benefit, said Couzin, who also is Lutz’s graduate adviser. This new work shows that in large groups these same individual guidelines can eventually coordinate group-wide, he said — the ants acted as a unit although each ant only knew its immediate circumstances.

“They don’t know how many other ants are in the bridge, or what the overall traffic situation is. They only know about their local connections to others, and the sense of ants moving over their bodies,” Couzin said. “Yet, they have evolved simple rules that allow them to keep reconfiguring until, collectively, they have made a structure of an appropriate size for the prevailing conditions.

“Finding out how sightless ants can achieve such feats certainly could change the way we think of self-configuring structures in nature — and those made by man,” he said.

Ant-colony behavior has been the basis of algorithms related to telecommunications and vehicle routing, among other areas, explained co-first author Chris Reid, a postdoctoral research associate at the University of Sydney who conducted the work while at NJIT. Ants exemplify “swarm intelligence,” in which individual-level interactions produce coordinated group behavior. E. hamatum crossings assemble when the ants detect congestion along their raiding trail, and disassemble when normal traffic has resumed.

Previously, scientists thought that ant bridges were static structures — their appearance over large gaps that ants clearly could not cross in midair was somewhat of a mystery, Reid said. The researchers found, however, that the ants, when confronted with an open space, start from the narrowest point of the expanse and work toward the widest point, expanding the bridge as they go to shorten the distance their compatriots must travel to get around the expanse.

“The amazing thing is that a very elegant solution to a colony-level problem arises from the individual interactions of a swarm of simple worker ants, each with only local information,” Reid said. “By extracting the rules used by individual ants about whether to initiate, join or leave a living structure, we could program swarms of simple robots to build bridges and other structures by connecting to each other.

“These robot bridges would exhibit the beneficial properties we observe in the ant bridges, such as adaptability to local conditions, real-time optimization of shape and position, and rapid construction and deconstruction without the need for external building materials,” Reid continued. “Such a swarm of robots would be especially useful in dangerous and unpredictable conditions, such as natural disaster zones.”

Radhika Nagpal, a professor of computer science at Harvard University who studies robotics and self-organizing biological systems, said that the findings reveal that there is “something much more fundamental about how complex structures are assembled and adapted in nature, and that it is not through a supervisor or planner making decisions.”

Individual ants adjusted to one another’s choices to create a successful structure, despite the fact that each ant didn’t necessarily know everything about the size of the gap or the traffic flow, said Nagpal, who is familiar with the research but was not involved in it.

“The goal wasn’t known ahead of time, but ‘emerged’ as the collective continually adapted its solution to the environmental factors,” she said. “The study really opens your eyes to new ways of thinking about collective power, and has tremendous potential as a way to think about engineering systems that are more adaptive and able to solve complex cost-benefit ratios at the network level just through peer-to-peer interactions.”

She compared the ant bridges to human-made bridges that automatically widened to accommodate heavy vehicle traffic or a growing population. While self-assembling road bridges may be a ways off, the example illustrates the potential that technologies built with the same self-assembling capabilities seen in E. hamatum could have.

“There’s a deep interest in creating robots that don’t just rely on themselves, but can exploit the group to do more — and self-assembly is the ultimate in doing more,” Nagpal said. “If you could have small simple robots that were able to navigate complex spaces, but could self-assemble into larger structures — bridges, towers, pulling chains, rafts — when they face something they individually did not have the ability to do, that’s a huge increase in power in what robots would be capable of.”

The spaces E. hamatum bridges are not dramatic by human standards — small rifts in the leaf cover, or between the ends of two sticks. Bridges will be the length of 10 to 20 ants, which is only a few centimeters, Lutz said. That said, E. hamatum swarms form several bridges during the course of a day, which can see the back-and-forth of thousands of ants.

“The bridges are something that happen numerous times every day. They’re creating bridges to optimize their traffic flow and maximize their time,” Lutz said.

“When you’re moving hundreds of thousands of ants, creating a little shortcut can save a lot of energy,” he said. “This is such a unique behavior. You have other types of ants forming structures out of their bodies, but it’s not such a huge part of their lives and daily behavior.”

The research also included Scott Powell, an army-ant expert and assistant professor of biology at George Washington University; Albert Kao, a postdoctoral fellow at Harvard who received his doctorate in ecology and evolutionary biology from Princeton in 2015; and Simon Garnier, an assistant professor of biological sciences at NJIT who studies swarm intelligence and was once a postdoctoral researcher in Couzin’s lab at Princeton.

To conduct their field experiments, Lutz and Reid constructed a 1.5-foot-tall apparatus with ramps on both sides and adjustable arms in the center with which they could adjust the size of the gap. They then inserted the apparatus into active E. hamatum raiding trails that they found in the forests of Barro Colorado Island, Panama. Because ants follow one another’s chemical scent, Lutz and Reid used sticks and leaves from the ants’ trail to get them to reform their column across the device.

Lutz and Reid observed how the ants formed bridges across gaps that were set at angles of 12, 20, 40 and 60 degrees. They gauged how much travel-distance the ants saved with their bridge versus the surface area (in centimeters squared) of the bridge itself. Twelve-degree angles shaved off the most distance (around 11 centimeters) while taking up the fewest workers. Sixty-degree angles had the highest cost-to-benefit ratio. Interestingly, the ants were willing to expend members for 20-degree angles, forming bridges up to 8 centimeters squared to decrease their travel time by almost 12 centimeters, indicating that the loss in manpower was worth the distance saved.

Lutz said that future research based on this work might compare these findings to the living bridges of another army ant species, E. burchellii, to determine if the same principles are in action.

The paper, “Army ants dynamically adjust living bridges in response to a cost-benefit trade-off,” was published Nov. 23 by Proceedings of the National Academy of Sciences. The work was supported by the National Science Foundation (grant nos. PHY-0848755, IOS0-1355061 and EAGER IOS-1251585); the Army Research Office (grant nos. W911NG-11-1-0385 and W911NF-14-1-0431); and the Human Frontier Science Program (grant no. RGP0065/2012).

Journal Reference:

  1. Chris R. Reid, Matthew J. Lutz, Scott Powell, Albert B. Kao, Iain D. Couzin, Simon Garnier. Army ants dynamically adjust living bridges in response to a cost–benefit trade-offProceedings of the National Academy of Sciences, 2015; 201512241 DOI: 10.1073/pnas.1512241112

Pecuária é responsável por 15% dos gases do efeito estufa (O Globo)

Renato Grandelle, 24/11/2015

Desmatamento na Região de Xapuri no Acre – Gustavo Stephan/ 05-12-2013

RIO— Parte expressiva da liberação de carbono na atmosfera fica bem longe da fumaça liberada por usinas ou carros. Um novo estudo do Chatham House, o Real Instituto de Relações Internacionais do Reino Unido, indica que cerca de 15% dos poluentes que levam ao aquecimento global são provenientes da pecuária — seja pelo metano da digestão e estrume dos animais, ou pela produção de culturas para alimentação. De acordo com o relatório “Mudanças climáticas, mudanças na alimentação”, reduzir a quantidade de carne no prato é fundamental para assegurar que a temperatura global não avance mais do que 2 graus Celsius neste século.

O planeta, porém, ignora a recomendação. Estima-se que, com o aumento da classe média nos países em desenvolvimento — especialmente na China e no Brasil —, o consumo de carne crescerá até 76% nos próximos 35 anos.

Mudar a alimentação pode cortar pela metade os custos das futuras medidas contra o aquecimento global. E o clima não será a única área favorecida pela nova dieta. Coautora do estudo, Laura Wellesley ressalta que conter o consumo exagerado de carne também traz benefícios imediatos à saúde.

— Não estamos sugerindo que todo mundo deve se tornar vegetariano. A carne, consumida com moderação, pode fazer parte de uma dieta saudável para o indivíduo e o meio ambiente — ressalta. — De acordo com a Escola de Medicina de Harvard, a porção diária não deve ultrapassar 70 gramas, que é um hambúrguer de tamanho médio. Se nada for feito para nos limitarmos a este valor, os padrões alimentares atuais serão incompatíveis com o aumento de temperatura de apenas 2 graus Celsius.


Atualmente, o consumo dos brasileiros é de duas vezes e meia a quantidade diária recomendada; nos EUA, é de três vezes mais. Um estudo divulgado em outubro pela Organização Mundial de Saúde alertou que a ingestão exagerada de carnes vermelhas e processadas pode levar à ocorrência de doenças não transmissíveis, principalmente o câncer.

— Mudanças de alimentação devem estar no topo da lista das discussões na Conferência do Clima de Paris (COP-21). É uma estratégia rápida e econômica para conter as emissões de gases-estufa — avalia Laura.

Ainda assim, o debate sobre a dieta mundial deve ficar fora da mesa de negociações da COP-21. Para os pesquisadores do Chatham House, os governos temem que campanhas reivindicando limitações ao consumo de carne desagradem a opinião pública e a indústria de alimentos.

Desde o início do ano, cerca de 150 países apresentaram à ONU metas voluntárias para cortar a emissão de gases de efeito estufa. A diminuição do consumo de carne não foi mencionada em nenhum projeto.

— Como são cautelosos em assumir um risco, os governos têm favorecido a inércia e permanecem em silêncio sobre a questão das dietas sustentáveis — lamenta Laura. — As pesquisas revelam que inicialmente muitas pessoas não gostam da ideia de comer menos carne, e por isso são resistentes à ideia de intervenção do poder público. No entanto, depois que são informadas sobre a relação entre dieta e clima, a maioria recomenda que o governo promova intervenções e forneça orientações e incentivos para a mudança na alimentação.

No Brasil, diz o levantamento, a população sente orgulho da pecuária, mas demonstra preocupação com sua potencial expansão desordenada para a Floresta Amazônica. A pecuária é uma das atividades econômicas mais importantes do país — representa 6,8% do PIB —, mas também corresponde a uma das mais ineficientes do mundo, já que é baseada na prática extensiva. Os lucros estão no tamanho da área usada, e não na eficiência produtiva. No Cerrado há, em média, apenas 1 boi por hectare — estima-se que é possível triplicar esta ocupação sem qualquer comprometimento dos rendimentos do setor.

A força econômica da pecuária e o hábito do consumo exagerado de carne — a “tradição do churrasco de fim de semana”, como destaca o Chatham House — são os maiores obstáculos para que o governo federal desenvolva projetos que promovam a alimentação saudável e, ao mesmo tempo, aumente o alerta da população contra as mudanças climáticas. O brasileiro é conhecido como um dos povos mais preocupados no mundo com o aquecimento global, mas nunca foi informado sobre sua ligação com mudanças na dieta.

James Cameron wants you to fight global warming by changing what you eat (Washington Post)

 November 18

James Cameron speaking during a forum at the 2012 Beijing Film Academy. AFP/Getty Images)

There are few films more environmentally infused than the highest grossing one in history, “Avatar” — in which a highly militarized mining company seeks to exploit the resources of the rich forest world of Pandora. But less known is how the film’s director, James Cameron, has also used some of the money made from “Avatar” to champion an array of green causes, even as he’s also using clean energy to power the film’s three planned sequels.

“We put in a 1 megawatt solar array on the roof of the soundstages where we’re doing the ‘Avatar’ sequels, so we’ll be net energy neutral there,” Cameron told The Washington Post recently. “We’ll sell back to the grid and it will balance back over the time when we’re working and when we’re not working.”

It’s just one of the many green initiatives the director has undertaken. Heck, he even designed his own solar sunflowers, and they’re pretty cool looking.

(He’s also a noted underwater explorer: In 2012 Cameron undertook a historic dive 35,787 feet deep into the Mariana Trench.)

Cameron spoke Wednesday morning in Washington at Greenbuild, a major conference on green buildings sponsored by the U.S. Green Building Council. Projected population growth means there will be massive construction in new cities around the world, Cameron told The Post. “If all those buildings are constructed the way we’ve traditionally constructed buildings it will be an enormous spike in greenhouse gas emissions,” he adds.

But one of his most unique recent environmental causes has focused on what we eat — meat and dairy, particularly — and how it relates to climate change. This topic has long been a kind of elephant in the room of environmental discussions – and now Cameron is pointing straight at the elephant.

“When you add it all up, it comes up to about 14.5 percent of greenhouse gas comes from the animal agriculture sector,” Cameron says. “That’s bigger than all transportation combined.”

Granted, the gases aren’t just carbon dioxide — the leading, long-lived atmospheric greenhouse gas. They also include methane, which is harder hitting but dissipates much faster — and in this context chiefly comes from so-called “enteric fermentation” (digestion and subsequent burps) in cows and other livestock — and nitrous oxide, emitted by fertilizers and manure. The 14.5 percent figure was affirmed by Chatham House, a London-based think tank, which also calculated that livestock drives 39 percent of human-caused global methane emissions and 65 percent of human induced nitrous oxide emissions.

You can’t fix global warming without fixing carbon dioxide — it has a longer atmospheric residence time than these other gases, and is the dominant greenhouse gas in general. But Cameron observes that because agriculture is so closely tied to deforestation — in many places around the globe, forests are being cleared for cattle and other agricultural activities — it’s also in effect a major source of CO2 to the atmosphere.

Moreover, given global goals to keep global warming between 2 degrees Celsius, it has often been observed that taking action on non-CO2 gases with greater immediate warming consequences, like methane, can buy us some time.

There have been proposed techno-fixes to the problem of agricultural emissions — including the intriguing idea of changing the chemistry going on in cows’ rumens (one chamber of their stomachs)  by feeding them a “methane inhibitor” powder, which has been proved in published research to work. DSM, the Dutch life-sciences company, is developing this product.

[Meet the ‘clean cow’ technology that could help fight climate change]

But there’s also changing what we consume and, in effect, driving market-based changes on a global scale. On the latter front, Cameron and his wife, Suzy Amis Cameron, founded the Food Choice Taskforce, seeking to change our diets, and thereby, lessen climate change and other environmental impacts. “It’s a viable choice, it’s essentially a thermostat that’s being handed to us that we can use to turn down climate change,” Cameron says.

The group is supported in part by the private Avatar Alliance Foundation, which Cameron endowed with some of the film’s proceeds. The foundation has also supported Chatham House’s research on agriculture and the environment.

According to Chatham House, international negotiations to address climate change naturally target the energy and transportation sectors, and the forest and land use sector — but for a complex set of reasons, they have just as traditionally overlooked agriculture. The report contended that “dietary change is essential if global warming is not to exceed two degrees Celsius – the stated objective of the international community.”

“I think they’re basically unachievable goals if we don’t embrace the way we eat as well as part of it. But nobody’s talking about it,” says Cameron.

Granted, there are signs of momentum lately. The U.S. Dietary Guidelines Advisory Committee, for instance, recently made major waves when it included environmental concerns to its assessment of our diets. “Current evidence shows that the average U.S. diet has a larger environmental impact in terms of increased greenhouse gas emissions, land use, water use, and energy use,” the report noted, compared with more plant-based diets. Meanwhile,   the World Health Organization’s International Agency for Research on Cancer recently declared processed meats a carcinogen.

When it comes to the U.S. dietary guidelines committee — a group of scientists who provide advice, but do not set official policy, it seems a particularly auspicious sign. “For the first time, the issue that I’ve been screaming about has been codified as advice to the government,” says Cameron.

More general, Cameron — who is just as much a wonk  about climate change and ocean science as one presumes that he is about the technical aspects of filmmaking — thinks the tide is turning.

“It feels like climate denialism is starting to look like it’s really on the wrong side of history for a greater majority every day,” says Cameron. “Momentum is building in a great direction.”

Wimps or warriors? Honey bee larvae absorb the social culture of the hive, study finds (Science Daily)

October 29, 2015
University of Illinois at Urbana-Champaign
Even as larvae, honey bees are tuned in to the social culture of the hive, becoming more or less aggressive depending on who raises them, researchers report.

Even as larvae, honey bees are tuned in to the social culture of the hive, becoming more or less aggressive depending on who raises them. The researchers don’t yet know how the social information is being transmitted to the larvae. Credit: © gertrudda / Fotolia

Even as larvae, honey bees are tuned in to the social culture of the hive, becoming more or less aggressive depending on who raises them, researchers report in the journal Scientific Reports.

“We are interested in the general issue of how social information gets under the skin, and we decided to take a chance and ask about very young bees that are weeks away from adulthood,” said University of Illinois entomology professor and Carl R. Woese Institute for Genomic Biology director Gene Robinson, who led the research with postdoctoral researcher Clare Rittschof and Pennsylvania State University professor Christina Grozinger.

“In a previous study, we cross-fostered adult bees from gentle colonies into more aggressive colonies and vice versa, and then we measured their brain gene expression,” Robinson said. “We found that the bees had a complex pattern of gene expression, partly influenced by their own personal genetic identity and partly influenced by the environment of the colony they were living in. This led us to wonder when they become so sensitive to their social environment.”

In the new study, the researchers again cross-fostered bees, but this time as larvae in order to manipulate the bees’ early life experiences. The larvae were from a variety of queens, with sister larvae divided between high- and low-aggression colonies.

The larvae were removed from their foster hives and put into a neutral laboratory environment one day before they emerged as adults. The researchers tested their aggressiveness by exposing them to an intruder bee.

They were surprised to see that the bees retained the social information they had acquired as larvae. Those raised in aggressive colonies were 10 to 15 percent more aggressive than those raised in the gentler colonies.

“Even sisters born of the same queen but reared in different colonies differed in aggression, demonstrating the potency of this environmental effect,” Robinson said.

The finding was surprising in part because bee larvae undergo metamorphosis, which radically changes the structure of their bodies and brains.

“It’s hard to imagine what elements of the brain are influenced during the larval period that then survive the massive reorganization of the brain to bias behavior in this way,” Robinson said.

The aggressive honey bees also had more robust immune responses than their gentler counterparts, the team found.

“We challenged them with pesticides and found that the aggressive bees were more resistant to pesticide,” Grozinger said. “That’s surprising considering what we know from vertebrates, where stress in early life leads to a diminishment of resilience. With the bees, we saw an increase in resilience.”

This finding also suggests that the effects of the social environment on young bees could extend beyond brain function and behavior, Robinson said.

The researchers don’t yet know how the social information is being transmitted to the larvae. They tested whether the bees differed in size, which would suggest that they had been fed differently, but found no size differences between aggressive and gentle bees.

“Adult honey bees are well known for their sociality, their communication skills and their ability to adjust their behavior in response to the needs of the hive,” Rittschof said.

“In mammals, including humans, the effects of early life social interactions often persist throughout adulthood despite additional social experiences,” she said. “A similar pattern in honey bees has broad implications for our understanding of social behavior within the hive and in comparison with other species.”


Journal Reference:

  1. Clare C. Rittschof, Chelsey B. Coombs, Maryann Frazier, Christina M. Grozinger, Gene E. Robinson. Early-life experience affects honey bee aggression and resilience to immune challengeScientific Reports, 2015; 5: 15572 DOI: 10.1038/srep15572

Borboletas estão encolhendo por causa das mudanças climáticas (O Globo)

Estudo mostra redução no tamanho de duas espécies na Groenlândia


A Boloria chariclea foi uma das espécies analisadas pelos pesquisadores – Divulgação/Toke T. Hoye

RIO — As mudanças climáticas já provocam impactos sobre a Humanidade, mas também sobre algumas espécies animais. Um estudo publicado ontem na revista científica “Biology Letters” mostra que borboletas na Groenlândia se tornaram menores como resposta ao aumento das temperaturas. Para os pesquisadores, a mudança no tamanho corporal prejudica a mobilidade, que pode causar graves consequências à dinâmica populacional e distribuição geográfica das espécies.

Pesquisadores da Universidade de Aarhus, na Dinamarca, analisaram aproximadamente 4,5 mil borboletas de duas espécies diferentes capturadas entre 1996 e 2013. Os resultados apontaram para uma redução no tamanho das asas, na mesma taxa em ambas as espécies, provocada pelo aumento das temperaturas durante o verão. As espécies estudadas foram a Boloria chariclea e a Colias hecla.

— Nossos estudos mostram que machos e fêmeas seguem o mesmo padrão, que é similar em duas espécies diferentes, o que sugere que o clima exerce um papel importante na determinação do tamanho corporal das borboletas na Groenlândia — explicou Toke T. Hoye, pesquisador da Universidade de Aarhus.Esse é um dos primeiros estudos a acompanhar mudanças no tamanho corporal de uma espécie durante um período de mudanças climáticas, e corrobora pesquisas realizadas em laboratório, mas raramente demonstradas em campo.

A Colias hecla está ficando menor por causa dos verões mais quentes no Ártico – Divulgação/Toke T. Hoye

Experimentos apontam que a mudança no tamanho corporal é uma resposta antecipada às mudanças climáticas, que pode acontecer de duas maneiras. Para algumas espécies, uma temporada maior de alimentação pode resultar no aumento do tamanho, enquanto para outras, alterações metabólicas provocam a perda de energia e consequente redução das dimensões.

— Nós, humanos, usamos mais energia quando está frio, porque precisamos manter a temperatura corporal constante — disse Hoye. — Mas para a larva da borboleta e outros animais de sangue frio, que dependem do ambiente para manter a temperatura, o metabolismo aumenta em temperaturas maiores por causa dos processos bioquímicos que se tornam mais rápidos. Dessa maneira, a larva gasta mais energia do que é capaz de consumir. Nossos resultados indicam que essa mudança é tão significativa que a taxa de crescimento das larvas diminui. E quando as larvas são menores, as borboletas também se tornam menores.

As consequências para as borboletas do Ártico podem ser significativas. Com corpos menores, a mobilidade é reduzida. Como as duas espécies vivem apenas no Norte, a redução no tamanho pode ter graves consequências na dinâmica populacional, e prejudicar a dispersão dos insetos.

— Elas vivem tão ao Norte que não podem se mover para regiões mais frias, e elas provavelmente vão desaparecer da parte mais ao Sul da Groenlândia por causa do aumento da temperatura — disse Hoye. — Além disso, sua capacidade de dispersão está se deteriorando, e corpos menores devem resultar em menor taxa de fecundidade. Então, essas espécies do Ártico devem enfrentar desafios severos causados pela rápida mudança climática.

Leia mais sobre esse assunto em
© 1996 – 2015. Todos direitos reservados a Infoglobo Comunicação e Participações S.A. Este material não pode ser publicado, transmitido por broadcast, reescrito ou redistribuído sem autorização.

Animals, Humans, and Forms of Life (Engagement)

Ship-Of-Theseus-Hindi-MovieStill from the “Ship of Theseus” (2012)

By Maya Ratnam, Johns Hopkins University §

In what ways do we humans share lives with nonhuman animals? What are our ethical commitments towards them? What kinds of moral worlds is it possible for humans and nonhumans to cohabit? These questions have preoccupied not just moral philosophers but also anthropologists working in diverse ecological and socio-political milieus. While debates in philosophy engage in such complicated questions as our duties with respect to animals and their rights in respect to us, anthropologists have tended to focus more on actual local worlds in which humans share lives with nonhuman others—animals, plants, microorganisms and spirit beings. While an older anthropology explored our kinship with nonhuman others in the form of debates on totemism, sacrifice and animism, sub-fields such as “ecological” anthropology locate these questions in the nature-culture interface. The more recent, “ontological” turn attempts a radical unsettling of the epistemological certainties of “Western” social science by dwelling in spaces of trans-species engagements and encounters. Dreaming dogs (Kohn 2007), caribou that give themselves to their hunters (Willerslev 2007), jaguar spirit masters (Nadasdy 2007)— these all invite journeying into worlds where human uniqueness cannot be assumed. These are not merely quaint, alternative cosmologies where people “believe” certain things about nonhuman personhood, they are spaces in which humanness is not taken for granted as the property of some and denied to others (those who do not possess language or tool-use or souls); humanness is, instead, a task to be achieved in spaces of shared encounter and habitation. By no means are these spaces, often ecological niches such as forests or mountains or deserts, inhabited on equal terms. But they are frequently worlds in which the stakes of the nonhuman in sustaining or threatening the life of a human community is explicitly acknowledged.

In contrast, modern, post-industrial societies have largely invisibilized animals from everyday social worlds. Contact between animals and humans only takes place in highly regulated situations; as pets, for instance, in zoos, sanctuaries and theme parks or in laboratories and stockyards, where they are bred for human use and overuse. As spaces of real freedom for animals decline and they come more and more under human stewardship, the problem of humans’ ethical responsibilities towards them, and their rights with respect to us is named, if not resolved, by the term “animal rights.” The requirement for a new conceptual vocabulary to address the complex ethical and political implications of human-animal entanglements in diverse conditions has led to the emergence of the hybrid, boundary-crossing field of animal studies spanning disciplines as diverse as cognitive ethology, field ecology behavioral psychology, philosophy, literary studies and biological and social anthropology.

In this context, a recent set of essays, framed as philosophical responses to the writings of novelist J.M. Coetzee, addresses these issues from a rather singular vantage point. My aim in this brief essay is to bring these essays into conversation with certain Indian materials— a film, to be specific, that also deals with similar themes.

Cover art for Coetzee's "Elizabeth Costello" (2003)
Cover art for Coetzee’s “Elizabeth Costello” (2003)

In 1997, novelist J.M. Coetzee introduced his eponymous character Elizabeth Costello on the occasion of the Tanner Lectures at Princeton University; while ostensibly dealing with philosophical themes, his lectures deviated from convention in that they took the form of a fictional Australian author, Elizabeth Costello, delivering two lectures to an American university audience. The two lectures, entitled “The Lives of Animals,” were subsequently published as a volume with a set of commentaries, and also in a novel by Coetzee, titled “Elizabeth Costello.” Rather like the question of the animal itself, Costello’s is a presence that jars, haunts and discomfits. The character is that of an aging novelist who is invited to give a lecture at the liberal arts college where her son also teaches. Instead of delivering the lecture expected of her, Costello, rather like Coetzee himself, delivers a lecture on what her son calls “a hobbyhorse of hers”—the status of animals. The content and tone of the two lectures delivered by Costello are far from the works for which she is famous, and signal her own alienation from her younger self and the world around her. Costello likens herself to Kafka’s Red Peter, who performs for the academy. Almost immediately, she polarizes her listeners by likening the contemporary mass killing of animals in slaughterhouses, stockyards and laboratories to the concentration camps of Nazi Germany. In order for life to go on in areas surrounding the camps, there must have been, Costello argues, a certain willful misrecognition on the part of those living there. A sort of not-knowing that replaced a full acknowledgement of the horrors that went on around them. In order for people to live with what was being done around them, it was necessary for them not to know. We are now accustomed in our rhetoric, says Costello, “to think of Germans of a particular standing a little outside of humanity…[t]hey lost their humanity, in our eyes because of a certain willed ignorance on their part” (Coetzee 1999:20). The very normalization of brutality that now, today, makes us feel that a whole generation was tainted by it, is akin to what continues to happen in the case of our non-response to the plight of animals, says Costello. In a sense then, it is possible to go through the pleasant streets of a nice town, by agreeing to not know that possibly, quite nearby, there are abattoirs and factory farms. This not knowing is of a very specific kind and it points to an aspect of knowing that the philosopher Stanley Cavell calls “acknowledgement.” It refers to situations where knowing, as a mode of relating to the world, fails. It only reinscribes our separateness from the world and our lack of fit with the world. It is not-knowing in relation to this special sense of knowing that Costello refers to.

Costello’s words, which do not take the conventional form of prescriptions or arguments for the better treatment of animals, are jarring, and succeed in losing her audience. Her son is embarrassed, and so are her hosts. People take offense at her comparison of the situation of animals with the holocaust.

Costello declines to speak in the voice of reason. Reason, she says, is better available in the words of countless philosophers from Augustine to Aquinas, Porphyry to Plato. The audience doesn’t need her to repeat their words. Reason is also what has systematically been used to distance humans not just from other living beings but from our own organic life. Reason is what argues for an unbridgeable gap between human experience and nonhuman experience, that renders each inaccessible to the other. She prefers, she says, the voice of poetry, which allows for us to just experience in embodied form, both joy and suffering, to just be. Poetry, in the language available to Costello, is a much more likely country from which to experience animal life and our own animality. Costello’s speech does not take the form of propositional argument or of a polemic— pro or anti vegetarianism, in favor of or against laboratory testing, for instance. These arguments stem from a point where the place of the animal in our world is settled. Instead, Costello, or the figure of Costello, pressures us to be unsettled, asks us to allow the animal to mark us. She does this at various points in her speech by drawing attention to her own body: she likens herself to an animal, to Kafka’s ape, to a corpse. Therefore, when she fields sharp questions from her audience— are you saying we should give up meat?— her answers fail to convince, because she is not speaking from a place of rationality, she is speaking from a place of madness. Later, at the polite dinner given in her honor, when a guest professes “great respect,” for vegetarianism as a way of life, Costello says- “I’m wearing leather shoes…I’m carrying a leather purse. I wouldn’t have overmuch respect if I were you” (Coetzee 1999:43).

By way of this comment, Costello draws attention to the specificity of the human animals’ form of life— we can be marked by animal suffering and also not be marked by it, we can distance ourselves not just from other animals, but also from our own animality, and from other humans who are regarded as somehow “not quite human.”

It is impossible to do justice to all the nuances of Coetzee’s brilliant text in the space of this brief essay— but one further remark must be made. Coetzee, through Costello, is also making a particular kind of claim about language, particularly human language—not as something that separates us and elevates us beyond the plane of nonhuman animals, but as something that exposes us, in all our vulnerability, to the world. This point has been brilliantly explored in a set of essays titled “Philosophy and Animal Life” that try to respond, in a philosophical voice, to Coetzee’s genre-bending text (and the set of essays that accompanies “The Lives of Animals”). Of these, the response by Cora Diamond stands out for its stunning appreciation of the Costello pieces as not merely putting forth a case for animal rights in an imaginative and literary way, in which the figure of Costello is a mouthpiece for Coetzee’s views on our ethical responsibilities to animals. Instead, Diamond suggests that there are two ways to read the lectures— one is to read them as grappling with the ethical issue of how to treat animals. Another is to see them as being centrally about a wounded woman, a wounded animal. The statement about the holocaust, which so polarizes Costello’s audience, can be seen as an argument by analogy for our treatment of animals in the contemporary moment, or as the cry of “a wounded woman exhibiting herself as wounded through talk of the Holocaust that she knows will offend and not be understood” (Wolfe et al. 2008:50). It is really a cry of madness. This, argues Diamond, drops away totally in conventional readings of Coetzee’s text. Drawing from the work of philosopher Stanley Cavell (who also has a piece in the volume), she calls such conventional readings as instances of “deflection,” in which “we are moved from the appreciation, or attempt at appreciation, of a difficulty of reality to a philosophical or moral problem apparently in the vicinity” (Wolfe et al. 2008:57). “Our concepts, our ordinary life with our concepts pass by as if it were not there; the difficulty, if we try to see it, shoulders us out of life, is deadly chilling” (Wolfe et al. 2008:58). In other words, arguments about animals’ rights, or vegetarianism, or laboratory testing are really the limited response that human language can come up with to contain a horror that, if embraced in its fullness, would leave us with no home in our language. It is this domain of experience, which resists interpretation, which resists philosophy, that Diamond says is what the figure of Costello is “about.”

When I walk to my classes and to the library on campus everyday, the possible use of animals in medical and scientific research in unseen underground laboratories around me does not unhinge me. In fact, I hardly think about it. This is not the same as not knowing about it. It is a special kind of unknowing where I do not allow the knowledge to mark me. For, if it did, I would not be able to take another step. In a sense then, this dulling of our response to the pain of the other is also what marks the human form of life, enables it to carry on and protect itself. But then, is it human anymore? The response to this “difficulty of reality” cannot take the form— but, animal research is necessary for… – for then the problem has already been displaced to another register. That is what Diamond refers to as the “difficulty of philosophy,” of doing philosophy when philosophy has in a sense, become impossible. It is this potential of the everyday around us to carry horrors that throw us into skeptical doubt that has been a running theme in the work of Stanley Cavell, and which Diamond explores fully in her essay, “The Difficulty of Reality and the Difficulty of Philosophy.”

At this point, I find that my thoughts and words have, of themselves, led me to the example I was proposing to discuss to amplify this “difficulty of reality” outlined above. My example consists of a film, “Ship of Theseus,” written and directed by an Indian filmmaker, Anand Gandhi, which premiered at the 2012 Toronto International Film Festival to much critical acclaim. I discuss the film as an ethnographic vignette, that is, as a voice from a particular culture that speaks to global concerns. The title of the film is a reference to the paradox of whether an object restored with the dismembered parts of its former self is still the same object. The film itself tracks three individuals in present-day Mumbai— a young woman photographer from Egypt, an ailing monk, and a young stockbroker. All three are in need of vital organs, and only come together at the very end of the film at an event organized by the NGO that facilitates organ donation. The film has received much praise for being a somewhat unique venture within the general climate of popular Indian cinema, unabashedly dealing with weighty, cerebral themes. It has also been sneered at for the apparent pretentiousness of its “philosophy”— encapsulated in snippets of ponderous dialogue. I find the film intriguing for the simple reason that it explicitly deals with the question of animal suffering, a theme that has rarely found any place in the popular cinema of any part of the world, and offers a brief glimpse into the marginal spaces that animals occupy in the life of a bustling mega-city. The second segment of the three-part film, which is the one that this essay takes up for discussion, centers on Maitreya, a monk belonging to a sect practicing extreme nonviolence, who is portrayed as being an intelligent, scientifically-oriented, articulate man. Maitreya is actively involved with animal rights causes, but unlike Coetzee’s Costello, believes that reason and not sentiment should form the basis for animal rights campaigns. In the course of long, barefoot walks around the city, he engages a skeptical youngster who challenges him on his “extreme” views. Significantly for the film, Maitreya rejects for a long time, the medication that will prepare his body to undergo a liver transplant on the grounds that it has been tested on animals. Scenes of his progressing ailment are interspersed with montages of him attending a court case where animal rights groups are fighting a pharmaceutical company to give up animal testing. There are painful shots of rabbits in laboratories. Maitreya’s health deteriorates rapidly, and he ends up bedridden in a shelter, with other monks tending to his emaciated body and its discharges, over which he now has no control. At the point of delirium, when he finds the horror of his own mortality staring him in the face (the camera here pans directly into his ashen face), Maitreya collapses. Or rather, the entire structure of concepts with which he confronts the world, collapses. He is unable to embrace death and opts instead to take the medication.

Neeraj Kabi as Maitreya in Anand Gandhi’s “Ship of Theseus” (2012)

Maitreya, as a figure, is an interesting foil to Costello. They are both unseated, or rather, choose to be unseated, by the treatment they see meted out to animals around them. While Costello rejects the voice of reason for its complicity in this violence—Maitreya embraces it as a way to sound sane, to reach out to people around him. He is also coming from a different tradition— though the sect that he belongs to is not named, it is perhaps easy to identify as belonging to the Jain tradition, of which ahimsa is a founding principle. But ahimsa, which does not quite translate into its commonly invoked English counterpart, nonviolence, also encompasses a very different view of the human in relation to the world than the Judaeo-Christian tradition which Costello claims as her inheritance. “We— even in Australia— belong to a civilization deeply rooted in Greek and Judeo-Christian religious thought. We may not, all of us, believe in pollution, we may not believe in sin, but we do believe in the psychic correlates” (Coetzee 1999:21). Maitreya, on the other hand, coming from a culture whose location we might call, following Homi Bhabha, “hybrid,” is able to try on different voices for size. Unlike Costello, who rejects the voice of reason and feels trapped by it, he speaks with the voice of reason in an effort to reach out to those around him. Costello presents her body—exposes—we might say, her body to her audience as a wounded, talking animal. Maitreya’s body is equally “unreasonable,” but it is already a body immersed in a long tradition of practicing kinship with all organic life as an ethics of the self. Maitreya takes on his body, his organic being, as a vehicle for a practice of the self, not as Costello does, as a wound and a rebuke that alienates her from her fellow humans. Costello’s state of being resonates with a comment made by Veena Das in her reading of Wittgenstein— that “claims to one’s culture rest on one’s being able to find a voice within it both as a gift and also as a rebuke.” Oddly enough, given that he is a monk, Maitreya is much less unsettled in his world than Costello is in hers. His response to the suffering of nonhuman others, as embodied as Costello’s, does not result in paralysis; he does what is possible for him to do, or rather, what is available to him from within the tools of his culture. He picks a worm up from the floor where it can be crushed underfoot and places it on a leaf. He refuses to consume medicines tested on animals. He walks to the courthouse daily, barefoot, to follow the trial. He argues his point of view in a reasoned and cogent manner. He gives us a glimpse of what it might mean to live and exist in the face of what Diamond calls “the difficulty of reality.” But, in the final reckoning, when confronted with his death, the end of his physical being, he retreats. This is not a fall from grace, or a state of grace, as Costello feels her existence undoubtedly is, but an acknowledgement of his humanness and its limits. For Costello, this means constantly living a life in which she is “shouldered out” from the acceptable speech of those around her; she can only inhabit a place of madness. Maitreya’s culture is able to absorb him.

I find the film useful for anthropological thinking. The many emerging anthropologies of trans-species encounters are, after all, concerned with the problem of the humanness of the animal other. In many non-western ontologies, personhood as a state of being is not limited to humans. This view most often finds expression in the idea that the manifest form of each species is a mere envelope (a form of “clothing”) that is variable, and houses an internal essence or substance or soul which is unvarying. It is this knowledge of possession of an unvarying soul or essence that makes trans-species communication possible at all. By donning the skin of a bear, I am able to become a bear, to inhabit its “umwelt.” There is no limit, in that sense, to my capacity to become another. That is why, when these metamorphoses betray us, or we misread the signals from another being, our whole form of life is thrown into question. Because the presumption in any case is that communication across ontological domains is possible. This is the situation Eduardo Kohn describes in his remarkable essay, “How Dogs Dream: Amazonian Natures and the Politics of Transspecies Engagements” (Kohn 2007). Costello, who finds only disappointment in the languages available to her from her culture to address these sorts of questions, turns to poetry, which offers greater possibilities for sympathetic embodiment. Like all human animals, she struggles to find a home in culture and language.

Works Cited:

Coetzee, J.M. 1999. The Lives of Animals. Ed. and intro. Amy Gutman. Princeton University Press. Princeton, N.J.
Gandhi, Anand. 2012. Ship of Theseus. See trailer here
Kohn Eduardo. 2007. How Dogs Dream: Amazonian Natures and the Politics of Transspecies Engagements. American Ethnologist. Vol. 34, No. 1, pp. 3-24.
Nadasdy, Paul. 2007. The Gift in the Animal: The Ontology of Hunting and Human-Animal Sociality. American Ethnologist, Vol. 34, No. 1, (Feb., 2007), pp. 25-43.
Willerslev, R. 2007. Soul hunters: hunting, animism and personhood among the Siberian Yukaghirs. Berkeley: University of California Press.
Wolfe, Cary, Stanley Cavell, Cora Diamond, John McDowell and Ian Hacking eds. 2008. Philosophy and Animal Life.Columbia University Press. New York.

Maya Ratnam is presently a PhD candidate at the Department of Anthropology, Johns Hopkins University. She is writing her dissertation on the poetics and politics of forest-dwelling in Central India.

This post is part of our thematic series: “Multi-Species Anthropology: Becoming Human with Others

Animal spirits (The Economist)

Releasing animals into the wild is in vogue—with unwelcome consequences

Sep 12th 2015  | SHANGHAI

The Huangpu: hardly loach heaven

EVERY Saturday morning hundreds of devotees gather by Shanghai’s Huangpu river to liberate fish. Over three hours some 2,000 loach are tipped into the murky waters to the sound of chants.

This is fang sheng, or “animal release”, an East Asian Buddhist ritual in which captive creatures are freed. The point is to demonstrate compassion and earn merit. The practice is ancient, though along with everything else, it was condemned as so much superstition under Mao Zedong. Today fang sheng is making a comeback, especially among the young and well-off. Officials estimate around 200m fish, snakes, turtles, birds and even ants are released each year—though no one really has a clue.

Fang sheng associations can rake in around 1m yuan ($157,000) in annual donations. For some monks it has become a racket. The greatest price, however, is paid by the animals themselves and the ecosystems from which they come and into which they go.

A vast and mainly illegal wildlife trade caters to the demand for animals. Figures are hard to come by, but one paper estimated that in Hong Kong two markets sold over 630,000 birds a year, most destined for fang sheng. Many animals—perhaps half of all the birds—die during capture or transit from stress, disease or mishandling.

Nor does using reared or exotic species help. They create havoc in local ecosystems. Zhou Zhuocheng, chairman of China’s main body on aquatic ecology, cites the case of the mosquito fish from North America, a popular fish for fang sheng. It feeds on the eggs of the native Japanese rice fish, causing the latter to disappear completely in some areas. To add to the grimness, many animals, once released, are hoovered up and sold again to fresh devotees. Animals that do not survive the trauma are often sold as food.

Wang Tianbao, a 26-year-old programmer and evangelical Buddhist, admits that paying for animals that have only recently been released is “a waste of money”. Yet still he is prepared to spend oodles on fang sheng, through whose associations he can disseminate Buddhist information and reach new followers. He says he first practised fang sheng as a student, releasing two turtles that cost him 98 yuan, his food budget for three weeks. Today he spends 5,000-7,000 yuan, or about 5% of his annual salary. There may just be better ways to earn merit.

New evidence of cultural diversification between neighboring chimpanzee communities (University of Cambridge)



For centuries it has been thought that culture is what distinguishes humans from other animals, but over the past decade this idea has been repeatedly called into question. Cultural variation has been identified in a growing number of species in recent years, ranging from primates to cetaceans. Chimpanzees, our closest living relatives, show the most diverse cultures aside from humans, most notably, in their use of a wide variety of tools.

The method traditionally used to establish the presence of culture in wild animals compares behavioural variation across populations and excludes all behavioural patterns that can be explained by genetic or environmental differences across sites. Nevertheless, it is impossible to conclusively rule out the influence of genetics and environmental conditions in geographically distant populations.

To circumnavigate this problem, researchers, led by Dr. Kathelijne Koops, took a new approach. “We compared neighbouring chimpanzee groups living under similar environmental conditions, which allows for the investigation of fine scale cultural differences, whilst keeping genetics constant,” said Koops.

She and colleagues from Kyoto University and Freie Universität Berlin compared the length of tools used for ‘ant-dipping’ between two neighbouring chimpanzee communities, M-group and S-group, in the Kalinzu Forest, Uganda. Dipping for army ants is one of the hallmark examples of culture in chimpanzees and involves the use of a stick to extract the highly aggressive army ants from their underground nests.

Previous research has shown that ant-dipping tool length varied across chimpanzee study sites in relation to the army ant species (Dorylus spp.) that were present. So Koops compared the availability of the different species of army ants and the length of dipping tools used in the two adjacent chimpanzee communities.

The researchers found that M-group tools were significantly longer than S-group tools, despite identical army ant species availability. Considering the lack of ecological differences between the two communities, the tool length difference was concluded to be cultural. “Our findings highlight how cultural knowledge can generate small-scale cultural diversification in neighbouring groups,” said Koops.

“Given the close evolutionary relationship between chimpanzees and humans, insights into what drives cultural diversification in our closest living relatives will in turn shed light on how cultural differences emerge and are maintained between adjacent groups in human societies,” said Koops, who conducted the work at Cambridge University’s Division of Biological Anthropology and at Zurich University’s Anthropological Institute and Museum.

The research is published today in the Nature journal Scientific Reports.

The Ant, the Shaman and the Scientist: Shamanic lore spurs scientific discovery in the Amazon (Notes from the Ethnoground)

NOVEMBER 22, 2011

When he pointed to the tree trunk and said the scars were from fires set by invisible forest spirits, I had no idea this supernatural observation would lead to a new discovery for natural science.  Mariano, the eldest shaman of the Matsigenka village of Yomybato in Manu National Park, Peru, had first showed me the curious clearings in the forest that form around clumps of Cordia nodosa, a bristly tropical shrub related to borage (Borago officinalis).  Both the Matsigenka people and tropical ecologists recognize the special relationship that exists between Cordia and ants of the genus Myrmelachista: the Matsigenka word for the plant is matiagiroki, which means “ant shrub.”

Maximo Vicente, Mariano’s grandson, standing by a 
swollen, scarred trunk near a Cordia patch.

For scientists, the clearings in the forest understory around patches of Cordia are caused by a mutualistic relationship with the ants.  Cordia plants provide the ant colony with hollow branch nodes for nesting and bristly corridors along twigs and leaves for protection, while the ants use their strong mandibles and acidic secretions to clear away competing vegetation.  Local Quechua-speaking colonists refer to the clearings as “Devil’s gardens” (supay chacra).  For the Matsigenka, these clearings are the work of spirits known as Sangariite, which means ‘Pure’ or ‘Invisible Ones’.  Matsigenka shamans like Mariano come to these spirit clearings and consume powerful narcotics and hallucinogens such as tobacco paste, ayahuasca (Banisteriopsis), or the Datura-like toé (Brugmansia).[1]

A “Sangariite village clearing” (igarapagite sangatsiri)
in the upland forests of Manu Park.

With the aid of visionary plants, the shaman perceives the true nature of these mundane forest clearings: they are the villages of Sangariite spirits, unimaginably distant and inaccessible under ordinary states of consciousness.  While in trance, the shaman enters the village and develops an ongoing relationship with a spirit twin or ally among the Sangariite, who can provide him or her with esoteric knowledge, news from distant places, healing power, artistic inspiration, auspicious hunting and even novel varieties of food crops or medicinal plants.[2]  As proof of the existence of these invisible villages, Mariano pointed out to me the scars on adjacent tree trunks all around large, dense Cordia patches: “The scars are caused by fires the Sangariite set to clear their gardens every summer,” he explained.

Mariano wearing a cotton tunic with designs taught him by the
Sangariite spirits during an ayahuasca trance.

Douglas Yu, an expert on ant-plant interactions, was researching Cordia populations in the forests around Yomybato.[3]  I told him of Mariano’s observations about the Sangariite villages, and pointed out the distinctive marks on adjacent trees.  In his years of research, Yu had never noticed the trunk scars.  Intrigued, he cut into the scars and found nests teeming with Myrmelachista ants that appeared to be galling the trunks to create additional housing.  As detailed in a 2009 publication in American Naturalist[4], this case is the first recorded example of ants galling plants, reopening a century-old debate in tropical ecology begun by legendary scientists Richard Spruce and Alfred Wallace. The discovery of Myrmelachista‘s galling capability also helped Yu understand how this ant species persists in the face of competition by two more aggressive ant types, Azteca and Allomerus, that can also inhabit Cordia depending on ecological conditions.

Douglas Yu carries out research on ant-plant
interactions in the Peruvian Amazon.

My ongoing collaborations with Yu and other tropical biologists in indigenous communities have highlighted how important it is to pay attention to local people’s rich and often underappreciated knowledge about forest ecosystems: sometimes even those elements of folklore that appear quaint or “unscientific” contain astute insights about natural processes.

Cross section of a tree trunk galled by Myrmelachista ants
(photo: Megan Frederickson).

— This article was first published online on Nov. 7, 2011 with Spanish and Portuguese translations by O Eco Amazônia.


[1] G.H. Shepard Jr. (1998) Psychoactive plants and ethnopsychiatric medicines of the Matsigenka. Journal of Psychoactive Drugs 30 (4):321-332; G.H. Shepard Jr. (2005) Psychoactive botanicals in ritual, religion and shamanism. Chapter 18 in: E. Elisabetsky & N. Etkin (Eds.), Ethnopharmacology. Encyclopedia of Life Support Systems (EOLSS), Theme 6.79. Oxford, UK: UNESCO/Eolss Publishers [].

[2] G.H. Shepard Jr. (1999) Shamanism and diversity:  A Matsigenka perspective. In Cultural and Spiritual Values of Biodiversity, edited by D. A. Posey. London: United Nations Environmental Programme and Intermediate Technology Publications.

[3] D.W. Yu, H. B. Wilson and N. E. Pierce (2001) An empirical model of species coexistence in a spatially structured environment. Ecology 82 (6):1761-1771.
[4] D.P. Edwards, M.E. Frederickson, G.H. Shepard Jr. and D.W. Yu (2009) ‘A plant needs its ants like a dog needs its fleas’: Myrmelachista schumanni ants gall many tree species to create housing. The American Naturalist 174 (5):734-740. []

Posted by Glenn H. Shepard at 10:11 AM

Chimpanzés caçadores dão pistas sobre os primeiros humanos (El País)

Primatas que usam lanças podem fornecer indícios sobre origem das sociedades humanas

 12 MAY 2015 – 18:14 BRT

Um velho chimpanzé bebe água em um lago, em Fongoli, no Senegal. / FRANS LANTING

Na quente savana senegalesa se encontra o único grupo de chimpanzés que usa lanças para caçar animais com os quais se alimenta. Um ou outro grupo de chimpanzés foi visto portando ferramentas para a captura de pequenos mamíferos, mas esses, na comunidade de Fongoli, caçam regularmente usando ramos afiados. Esse modo de conseguir alimento é um uso cultural consolidado para esse grupo de chimpanzés.

Além dessa inovação tecnológica, em Fongoli ocorre também uma novidade social que os distingue dos demais chimpanzés estudados na África: há mais tolerância, maior paridade dos sexos na caça e os machos mais corpulentos não passam com tanta frequência por cima dos interesses dos demais, valendo-se de sua força. Para os pesquisadores que vêm observando esse comportamento há uma década esses usos poderiam, além disso, oferecer pistas sobre a evolução dos ancestrais humanos.

“São a única população não humana conhecida que caça vertebrados com ferramentas de forma sistemática, por isso constituem uma fonte importante para a hipótese sobre o comportamento dos primeiros hominídeos, com base na analogia”, explicam os pesquisadores do estudo no qual formularam suas conclusões depois de dez anos observando as caçadas de Fongoli. Esse grupo, liderado pela antropóloga Jill Pruetz, considera que esses animais são um bom exemplo do que pode ser a origem dos primeiros primatas eretos sobre duas patas.

Os machos mais fortes dessa comunidade respeitam as fêmeas na caça

Na sociedade Fongoli as fêmeas realizam exatamente a metade das caçadas com lança. Graças à inovação tecnológica que representa a conversão de galhos em pequenas lanças com as quais se ajudam para caçar galagos – pequenos macacos muito comuns nesse entorno –, as fêmeas conseguem certa independência alimentar. Na comunidade de Gombe, que durante muitos anos foi estudada por Jane Goodall, os machos arcam com cerca de 90% do total das presas; em Fongoli, somente 70%. Além disso, em outros grupos de chimpanzés os machos mais fortes roubam uma de cada quatro presas caçadas pelas fêmeas (sem ferramentas): em Fongoli, apenas 5%.

Uma fêmea de chimpanzé apanha e examina um galho que usará para capturar sua presa. / J. PRUETZ

“Em Fongoli, quando uma fêmea ou um macho de baixo escalão captura uma presa, permitem que ele fique com ela e a coma. Em outros lugares, o macho alfa ou outro macho dominante costuma tomar-lhe a presa. Assim, as fêmeas obtêm pouco benefício da caça, se outro chimpanzé lhe tira sua presa”, afirma Pruetz. Ou seja, o respeito dos machos de Fongoli pelas presas obtidas por suas companheiras serviria de incentivo para que elas se decidam a ir à caça com mais frequência do que as de outras comunidades. Durante esses anos de observação, praticamente todos os chimpanzés do grupo – cerca de 30 indivíduos – caçaram com ferramentas,

O clima seco faz com que os macacos mais acessíveis em Fongoli sejam os pequenos galagos, e não os colobos vermelhos – os preferidos dos chimpanzés em outros lugares da África –, que são maiores e difíceis de capturar por outros que não sejam os machos mais rápidos e corpulentos. Quase todos os episódios de caça com lanças observados (três centenas) se deram nos meses úmidos, nos quais outras fontes de alimento são escassas.

A savana senegalesa, com poucas árvores, é um ecossistema que tem uma importante semelhança com o cenário em que evoluíram os ancestrais humanos. Ao contrário de outras comunidades africanas, os chimpanzés de Fongoli passam a maior parte do tempo no chão, e não entre os galhos. A excepcional forma de caça de Fongoli leva os pesquisadores a sugerir em seu estudo que os primeiros hominídeos provavelmente intensificaram o uso de ferramentas tecnológicas para superar as pressões ambientais, e que eram até mesmo “suficientemente sofisticados a ponto de aperfeiçoar ferramentas de caça”.

“Sabemos que o entorno tem um impacto importante no comportamento dos chimpanzés”, afirma o primatólogo Joseph Call, do Instituto Max Planck. “A distribuição das árvores determina o tipo de caça: onde a vegetação é mais frondosa, a caçada é mais cooperativa em relação a outros entornos nos quais é mais fácil seguir a presa, e eles são mais individualistas”, assinala Call.

No entanto, Call põe em dúvida que essas práticas de Fongoli possam ser consideradas caçadas com lança propriamente ditas, já que para ele lembram mais a captura de formigas e cupins usando palitos, algo mais comum entre os primatas. “A definição de caça que os pesquisadores estabelecem em seu estudo não se distingue muito do que fazem colocando um raminho em um orifício para conseguir insetos para comer”, diz Call. Os chimpanzés de Fongoli cutucam com paus os galagos quando eles se escondem em cavidades das árvores para forçá-los a sair e, uma vez fora, lhes arrancam a cabeça com uma mordida. “É algo que fica entre uma coisa e a outra”, argumenta.

Esses antropólogos acreditam que o achado permite pensar que os primeiros hominídeos eretos também usavam lanças

Pruetz responde a esse tipo de crítica dizendo que se trata de uma estratégia para evitar que o macaco os morda ou escape, uma situação muito diferente daquela de colocar um galho em um orifício para capturar bichos. Se for o mesmo, argumentam Pruetz e seus colegas, a pergunta é “por que os chimpanzés de outros grupos não caçam mais”.

Além do caso particular, nem sequer está encerrado o debate sobre se os chimpanzés devem ser considerados modelos do que foram os ancestrais humanos. “Temos de levar em conta que o bonobo não faz nada disso e é tão próximo de nós como o chimpanzé”, defende Call. “Pegamos o chimpanzé por que nos cai bem para assinalar determinadas influências comuns. É preciso ter muito cuidado e não pesquisar a espécie dependendo do que queiramos encontrar”, propõe.

Confessions of a Shark Anthropologist (Anthropology News)

Anthropology and Environment Society

April 22, 2015

Patrick Nason

Earlier this year I received a phone call from an unknown number. “This is the National Geographic Channel. Is it true that you are a shark anthropologist?” I paused— “Yes, I guess you can say that.” “Great, we are doing a program about sharks and are asking experts why sharks attack at certain times and in certain places more than others. Can you tell me a bit about your work?”

My interest in sharks began in 2005 during an internship at a resort in Papua New Guinea. Ten miles from shore and ninety feet below the surface, a twelve-foot hammerhead shark swam straight at me, stopping only three feet away before turning to rejoin its group. As it moved gracefully into the deep, I caught my breath and returned to the surface.

Four years later, I was working on a dive boat in South Florida when a sport-fishing boat motored past with a large grey hammerhead hung from its rigging. For a brief moment, I thought it was the shark I encountered years before. And why couldn’t it be? Like whales, most species of sharks are highly migratory. They have little respect for exclusive economic zones, marine protected areas, or any other enclosures. What might appear as absolute freedom in these animals has led to the production of an abstract image of sharks as transgressive predators, menaces to society, and worthy targets of sport. Regardless of what the category of the shark has become, the individual animal hanging from that fishing boat was certainly dead—no longer a terrible monster.

Sharks Arranged for Sale at Fish Market, Indonesia (Photo credit: Patrick Nason)
Sharks Arranged for Sale at Fish Market, Indonesia (Photo credit: Patrick Nason)

This incident took place in 2009, just after Rob Stewart’s film Sharkwater revealed the decimation of global shark populations by the finning industry. Considering the importance of sharks to healthy marine ecosystems, surely it was wrong to continue killing them for sport. Thinking I might do some good, I spoke with the captain of the boat about their catch.

“Couldn’t you release them from now on?” I asked.

“They normally die during the fight.”

“Well, what about fishing for something else?”

“Sailfish and marlin are not in season,” he said. “And besides, the clients are paying for the experience, and they want their photo taken with the big sharks.”

“Yes but hammerhead populations are in serious decline.” I said.

“We catch plenty of them, and easily too. More this year than last.”

I was stuck. How could I prove something was threatened when local knowledge suggests otherwise? Even worse, how could anyone prove sharks were in decline when, as free-roaming marine animals, they cannot be easily counted?

That same year, National Geographic aired a documentary entitled Drain the OceanThe promotional abstract read: “In this special, we look at what most call ‘The Final Frontier.’ Using the newest data from scientists all over the world and the latest advancements in computer generated imaging, we are able to explore some of the most dramatic landscapes the Earth has to offer.” This was exactly what my argument lacked—quantitative support through technological innovation. If computers could reveal the geological truths of this invisible realm, perhaps they could also reveal the ecological truths of a planet in decline—dolphins tangled in drift nets, massive whales with harpoons rusting in their backs, and dwindling populations of sharks swishing their tales through the muddy terrain. If this could be done, then maybe I could convince the fisherman that killing sharks for money was wrong.

But draining the ocean is not yet possible, nor should it be. Even if through some technological means we could illuminate the other seventy percent of our planet, the lives and the forms of relationality between humans and marine animals (however contentious they may be) would change at the moment of discovery. In trying to protect sharks, neither scientific nor emotional appeals alone are sufficient to effect social change. There remains a mystery of what oceanic animals do, how they do it, and exactly how many are required to keep doing what they do. If this mystery were completely resolved, the result would be equally harmful to marine life and to those who make their living upon the sea; for this unknown marks the distinction between our terrestrial selves and aquatic others, and is therefore what makes knowledge of the ocean (and thus ourselves) possible.

 An Anthropology of the Ocean

My phone call with National Geographic didn’t last long. The producer ended it by saying, “Your work sounds interesting, but we are looking for more evidence about why these attacks are occurring. Could you recommend a good marine biologist?” I did, and promptly hung up. I thought about our conversation—I don’t even know what a shark anthropologist is, and I’m supposed to be one! 

As human interests are directed into the sea in the form of extractive industry, state securitization, renewable energy, and conservation enclosure, we find ourselves as a species grappling with the politics and hermeneutics of the life aquatic. Responding to this with continued interest in the protection of marine life and forms of relationality, I have begun to sketch an Anthropology of the OceanWorking alongside indigenous fishing communities, ecologists, oceanographers, and drawing on the work of fellow anthropologists like Stefan Helmreich, such an approach examines how oceanic spaces and bodies are imagined, explored, and controlled, and how rights to marine resources are established and translated across social, spatial, and categorical boundaries

Within this framework, an Anthropology of Sharks could do the following: 1) draw upon the history of anthropological theory and method to ask how valuable spaces become ‘final frontiers,’ 2) describe how these produced frontiers are explored, claimed, enclosed—in short, how they are settled, and 3) reveal the forms of dispossession and disenchantment that occur when such settlement attempts to cultivate spaces have already been occupied by other ways of being and knowing. Putting a multispecies twist on subaltern studies and postcolonial anthropology, this approach would not only ask if the shark could “speak,” but if and how it might be heard amid the cacophony of other voices.

Patrick Nason is a doctoral student in the Department of Anthropology at Columbia University, and a blogger at the Shark Research Institute.

Puppy-Dog Eyes of Science (Savage Minds)

April 24, 2015 – John Hartigan

“Scientists say…” It’s interesting what natural science research starts making the rounds on social media. Mostly on diet or health broadly, and increasingly concerning climate change. On rare occasion—as over the past few days—some reports surface that offer insight into the circulating clutter itself, as in “cute dog” photos. In this instance, they’re opportunities to glimpse changing understandings of big topics, like domestication and evolution.

Links for two articles recently popped up in my Twitter feed: “The Science of Puppy-Dog Eyes” (NYTimes, 4/21/14) and “The Guilty Looking Companion,” Scientific American(4/20/15), both treating the gazing behavior of dogs and its various effects on humans. The first, by Jan Hoffman, reported on a study published in Science (in a themed-column on evolution), titled, “Dogs hijack the human bonding pathway.” The second, by Julie Hecht, “The Guilty Looking Companion,” builds off an article in Behavioral Processes, on a tangled question: “Are owners’ reports of their dogs’ ‘guilty look’ influenced by the dogs’ action and evidence of the misdeed?” Both suggest a far more agential companion species than many people might’ve suspected, but more importantly they each complicate stock domestication narratives suggesting it was something we simply did to them. They also suggest opportunities for extending social analysis beyond the human.

As the title of the Science article suggests, dogs were possibly canny drivers of domestication: “dogs became domesticated in part by adapting to human means of communication: eye contact.” In particular, the speculation is that dogs cleverly “utilized a natural system meant for bonding a parent with his or her child.” Evolutionarily, “the challenge for dogs may simply have been to express a behavioral (and morphological) repertoire that mimicked the cues that elicit caregiving toward our own young. Indeed, these juvenile characteristics of dogs are known to carry a selective advantage with respect to human preferences.” So dogs wile their way into our good graces by coopting the cuteness channel we have for children. To complicate agency a bit further, this seems to all hinge on a bidirectional hormonal mechanism: people and dogs both develop heightened, pleasurable levels of oxytocin from protracted gazing into each other’s eyes. “These findings suggest not only an interspecific effect of oxytocin, but also the exciting possibility of a feedback loop,” since “shifts in oxytocin concentration in a dog might elicit similar changes in a human and vice-versa—just as when a mother bonds with her infant.” Domestication just got a good deal more interesting.

“The guilty looking companion” takes up the theme of sociality and how social bonds are respectively maintained in various species, but also how humans might be duped by our tendency to anthropomorphize dogs as possessing a subjective state approximating shame. The reparative behaviors of appeasement and reconciliation that maintain relationships, practiced by many species, when manifested by dogs, reads easily, to us, as “guilt.” But through a fascinating series of experiments, researchers countered that these canine gestures are just “cohesive displays,” which operate “to reduce conflict, diffuse tension, and reinforce social bonds.” Dogs are not responding to ameliorating a subjective sense of shame at transgressing rules; they are instead “incredibly sensitive to environmental and social cues.” If there’s furniture torn or overturned, the owner is looking for someone to chastise—better grovel or cringe. These behavior are very effective, according to surveys of dog owners, who withhold punishments in the wake of such displays. But Hecht concludes with a caution: “It might just be that we’re anthropomorphizing,” in reference to the viral spew of “dog shamming” photos. “Which, in this case, might not be good for us or our dogs.” Indeed, but what is even more valuable here is the perspective opened up onto thinking about parallel and converging forms of species sociality, beyond the question of who is domesticating who.

On that topic, another recently published science article pursues just these openings, though unfortunately it does not seem to be circulating widely at all. “Testing the myth: Tolerant dogs and aggressive wolves,” in Proceedings B (Royal Society Publishing) reports on findings that indicate “a steeper dominance hierarchy in dogs than in wolves.” While “tolerance” is supposed to be the character trait “selected for,” dogs appear far more aggressive and uncooperative with conspecifics than wolves. The problem with “all domestication theories” to date is that they’ve ignored “apparently contradictory behaviours…observed in dogs and wolf packs.” There’s an enormous amount to this piece, but it may come down to “face,” as Erving Goffman developed the concept. “Visual communication in dogs is somewhat impaired due to their reduced visual (facial as well as bodily) expressions,” which “might lead to an inability to control conflicts in close quarters.” Wolves are far more articulate in reading both gaze and facial features in conspecific communications. Range et al write, “Although dogs and wolves seem to use the same signals overall, it is possible that dogs do not use them as appropriately as wolves”—i.e., they haven’t refined the etiquette of conspecific communications quite as well, though they’re very good at circumventing our conspecific gaze signaling tendencies.

But that “wolves appear tolerant, attentive, and at the same time cooperative towards pack members” is in stark “contrast to the starting point of several recent domestication hypotheses.” Free-ranging dogs—constituting about 76-83% of the global dog population!!—not so much. So the questions swirl as to dogs’ cognitive and emotional processes underlying their intraspecific sociality and how that variously aligns with ours, in the deep past and today.

Alteração comportamental de animais sinaliza, dias antes, a ocorrência de terremotos (Pesquisa Fapesp)

27 de abril de 2015

Estudo realizado no Parque Nacional Yanachaga, no Peru, correlacionou mudanças de comportamento de aves e pequenos mamíferos com a ionização da atmosfera causada pelo atrito subterrâneo das rochas (roedor paca [Cuniculus paca] filmado por uma camera tipo ‘motion-triggered’ / foto TEAM Network;

José Tadeu Arantes | Agência FAPESP – O dado de que alterações no comportamento dos animais sinalizam, com horas ou dias de antecedência, eventos como os terremotos já era conhecido. Especialmente noticiada foi a disparada dos elefantes asiáticos para terras altas por ocasião do terremoto seguido de tsunami de 26 de dezembro de 2004. Muitas vidas humanas foram salvas graças a isso. Mas tais eventos ainda não haviam sido documentados de maneira rigorosa e conclusiva. Nem fora estabelecida uma correlação de causa e efeito entre essa modificação do comportamento animal e fenômenos físicos mensuráveis.

Isso ocorreu agora em pesquisa realizada por Rachel Grant, da Anglia Ruskin University (Reino Unido), Friedemann Freund, da agência espacial Nasa (Estados Unidos), e Jean-Pierre Raulin, do Centro de Radioastronomia e Astrofísica Mackenzie (Brasil). Artigo relatando o estudo, “Changes in Animal Activity Prior to a Major (M=7) Earthquake in the Peruvian Andes”, foi publicado na revista Physics and Chemistry of the Earth.

O físico Jean-Pierre Raulin, professor da Universidade Presbiteriana Mackenzie, participou do estudo no contexto do projeto de pesquisa “Monitoramento da atividade solar e da Anomalia Magnética do Atlântico Sul (AMAS) utilizando uma rede de receptores de ondas de muita baixa frequência (VLF) – SAVNET – South América VLF network”, apoiado pela FAPESP.

“Nosso estudo correlacionou alterações no comportamento de aves e pequenos mamíferos do Parque Nacional Yanachaga, no Peru, com distúrbios na ionosfera terrestre, ambos os fenômenos verificados vários dias antes do terremoto Contamana, de 7,0 graus de magnitude na escala Richter, que ocorreu nos Andes peruanos em 2011”, disse Raulin à Agência FAPESP.

Os animais foram monitorados por um conjunto de câmeras. “Para não interferir em seu comportamento, essas câmeras eram acionadas de forma automática no momento em que o animal passava na sua frente, registrando a passagem por meio de flash de luz infravermelha”, detalhou o pesquisador. Em um dia comum, cada animal era avistado de cinco a 15 vezes. Porém, no intervalo de 23 dias que antecedeu o terremoto, o número de avistamentos por animal caiu para cinco ou menos. E, em cinco dos sete dias imediatamente anteriores ao evento sísmico, nenhum movimento de animal foi registrado.

Nessa mesma época, por meio do monitoramento das propriedades de propagação de ondas de rádio de muito baixa frequência (VLF), os pesquisadores detectaram, duas semanas antes do terremoto, perturbações na ionosfera sobre a área ao redor do epicentro. Um distúrbio especialmente grande da ionosfera foi registrado oito dias antes do terremoto, coincidindo com o segundo decréscimo no avistamento dos animais.

Os pesquisadores propuseram uma explicação capaz de correlacionar os dois fenômenos. Segundo eles, a formação maciça de íons positivos, devido à fricção subterrânea das rochas durante o período anterior ao terremoto, teria provocado tanto as perturbações medidas na ionosfera quanto a alteração comportamental dos animais. A fricção é resultado da subducção ou deslizamento da placa tectônica de Nazca sob a placa tectônica continental.

É sabido que a maior concentração de íons positivos na atmosfera provoca, seja em animais, seja em humanos, um aumento dos níveis de serotonina na corrente sanguínea. Isso leva à chamada “síndrome da serotonina”, caracterizada por maior agitação, hiperatividade e confusão. O fenômeno é semelhante à inquietação, facilmente perceptível em humanos, que ocorre antes das tempestades, quando a concentração de elétrons nas bases das nuvens também provoca um acúmulo de íons positivos na camada da atmosfera próxima ao solo, gerando um intenso campo elétrico no espaço intermediário.

“No caso dos terremotos, cargas positivas formadas no subsolo devido ao estresse das rochas migram rapidamente para a superfície, resultando na ionização maciça de moléculas do ar. Em algumas horas, os íons positivos assim formados alcançam a base da ionosfera, localizada cerca de 70 quilômetros acima do solo. Esse aporte maciço de íons teria provocado as flutuações da densidade eletrônica na baixa ionosfera que detectamos. Por outro lado, durante o trânsito subterrâneo das cargas positivas, devido a uma espécie de ‘efeito de ponta’, a ionização tende a se acumular perto das elevações topográficas locais – exatamente onde estavam localizadas as câmeras. Nossa hipótese foi que, para se livrar dos sintomas indesejáveis da síndrome da serotonina, os animais fugiram para áreas mais baixas, onde a ionização não é tão expressiva”, explicou Raulin.

“Acreditamos que ambas as anomalias surgiram a partir de uma única causa: a atividade sísmica causando estresse na crosta terrestre e levando, entre outras coisas, à enorme ionização na interface solo-ar. Esperamos que nosso trabalho possa estimular ainda mais a investigação na área, que tem o potencial de auxiliar as previsões de curto prazo de riscos sísmicos”, declarou Rachel Grant, principal autora do artigo.

Independentemente da observação do comportamento animal, os resultados obtidos mostram que a previsão de terremotos poderia ser feita também mediante a detecção da ionização do ar, com o monitoramento do campo elétrico atmosférico. “Já temos detectores instalados no Brasil, no Peru e na Argentina. E pretendemos, em breve, instalar sensores de campo elétrico atmosférico nos lugares propícios a atividades sísmicas importantes. Isso daria uma previsibilidade da ordem de duas semanas ou até mais. Por ocasião do terremoto do Haiti, em janeiro de 2010, a rede SAVNET já tinha detectado flutuações na ionosfera com 12 dias de antecedência, com resultados publicados na revista NHESS – Natural Hazards and Earth System Sciences”, afirmou Raulin.

Onças recebem colar com transmissor e são monitoradas pelo Instituto Mamirauá (MCTI/Instituto Mamirauá)

Em 2015, três onças-pintadas foram capturadas pelos pesquisadores na Reserva Mamirauá, no Amazonas, e têm sua movimentação acompanhada. Os exemplares são apelidados de Pérola, Baden e Caçulão

Iniciado o ciclo da cheia, com o aumento do nível da água, na Reserva Mamirauá, no Amazonas, os pesquisadores do Instituto Mamirauá vão a campo para a campanha de captura de onças-pintadas, realizada nos meses de dezembro, janeiro e março. Em 2015, três animais foram capturados e são agora monitorados pelos pesquisadores. Os três exemplares, apelidados de Pérola, Baden e Caçulão, são adultos: uma fêmea preta (melânica) e dois machos.

A recaptura de Baden, que já havia sido capturado e monitorado durante o ano de 2014, permite aos pesquisadores acompanharem seu comportamento por um período mais longo, gerando mais informações para o estudo. De acordo com o pesquisador Emiliano Esterci Ramalho, líder do Grupo de Pesquisa em Ecologia e Conservação de Felinos na Amazônia, desde a primeira captura, em 2008, todos os animais observados possuem bom estado de saúde.

O principal objetivo do estudo é entender a ecologia da onça-pintada nas florestas inundáveis da Amazônia, buscando conhecer como as onças se movimentam e como a alteração do ambiente pelo fluxo das águas (enchente, cheia, vazante e seca) influencia seu comportamento. As capturas também permitem aos pesquisadores avaliar o estado de saúde dos espécimes e detectar quais patógenos e parasitas estão presentes na população de onças da região.

O pesquisador citou um fato inusitado observado pelo monitoramento desse ano. “O Caçulão, que é um macho bem ousado, andou e deitou em baixo das casas de uma das comunidades da Reserva Mamirauá, comeu cachorros, galinhas e um pato no período em que estávamos na região. E vimos uma interação bem interessante dele com outro macho. Marcamos o ponto em que o outro estava e, no dia seguinte, o Caçulão esteve no mesmo local”, contou.

Leia mais.

(MCTI, via Instituto Mamirauá)

Galinhas enxergam as cores bem melhor do que os humanos (Folha de S.Paulo)



30/03/2015  02h00

Galinhas são animais de visão, diz a ciência. Perto delas, somos uns daltônicos.

Cientistas descobriram que suas retinas têm cinco cones sensíveis à cor. Humanos têm só três, que enxergam comprimentos de vermelho, azul e verde –o resto é mistura. Galinhas nos superam com um cone para violeta e alguns comprimentos ultravioleta e com um quinto receptor, ainda pouco compreendido.

Tatiane Rosa/Folhapress
Galinha da Faculdade de Medicina Veterinária e Zootecnia da USP, no campus de Pirassununga
Galinha da Faculdade de Medicina Veterinária e Zootecnia da USP, no campus de Pirassununga

Além disso, no ano passado cientistas de Princeton (EUA) mostraram que os átomos do olho da galinha se organizam num estado da matéria inédito na biologia, com propriedades tanto de cristal sólido quanto de líquido. Tal arranjo permite que cores sejam recebidas de forma muito nítida.

Foi assim que o olho da galinha foi parar na revista científica “Physical Review”, entre artigos sobre temas da física como dissipação de energia ou mecânica quântica.

Isso tudo faz com que seja difícil imaginarmos como uma galinha vê cores –só sabemos que é bem mais intenso e, digamos, psicodélico.

Por que a evolução deixou o olho da galinha assim? É uma boa pergunta. As respostas passam pela importância das cores para ela –pense, por exemplo, na plumagem colorida dos parceiros sexuais.

Chimps joining new troop learn its ‘words’: study (Reuters)


NEW YORK, Thu Feb 5, 2015 1:03pm EST

(Reuters) – Just as Bostonians moving to Tokyo ditch “grapefruit” and adopt “pamplemousse,” so chimps joining a new troop change their calls to match those of their new troop, scientists reported on Thursday in the journal Current Biology.

The discovery represents the first evidence that animals besides humans can replace the vocal sounds their native group uses for specific objects – in the chimps’ case, apples – with those of their new community.

One expert on chimp vocalizations, Bill Hopkins of Yerkes National Primate Research Center in Atlanta, who was not involved in the study, questioned some of its methodology, such as how the scientists elicited and recorded the chimps’ calls, but called it “interesting work.”

Chimps have specific grunts, barks, hoots and other vocalizations for particular foods, for predators and for requests such as “look at me,” which members of their troop understand.

Earlier studies had shown that these primates, humans’ closest living relatives, can learn totally new calls in research settings through intensive training. And a 2012 study led by Yerkes’ Hopkins showed that young chimps are able to pick up sounds meaning “human, pay attention to me,” from their mothers.

But no previous research had shown that chimps can replace a call they had used for years with one used by another troop. Instead, primatologists had thought that sounds referring to objects in the environment were learned at a young age and essentially permanent, with any variations reflecting nuances such as how excited the animal is about, say, a banana.

In the new research, scientists studied adult chimpanzees that in 2010 had been moved from a safari park in the Netherlands to Scotland’s Edinburgh Zoo, to live with nine other adults in a huge new enclosure.

It took three years, and the formation of strong social bonds among the animals, but the grunt that the seven Dutch chimps used for “apple” (a favorite food) changed from a high-pitched eow-eow-eow to the lower-pitched udh-udh-udh used by the six Scots, said co-author Simon Townsend of the University of Zurich. The change was apparent even to non-chimp-speakers (scientists).

“We showed that, through social learning, the chimps could change their vocalizations,” Townsend said in an interview. That suggests human language isn’t unique in using socially-learned sounds to signify objects.

Unanswered is what motivated the Dutch chimps to sound more like the Scots: to be better understood, or to fit in by adopting the reining patois?

(Reporting by Sharon Begley; Editing by Nick Zieminski)

Ebola Is Wiping Out the World’s Gorillas (The Daily Beast)

Finbarr O’Reilly/Reuters


In just four decades, Ebola has wiped out one third of the world’s chimp and gorilla populations. If it continues, the results will be devastating.

While coverage of the current Ebola epidemic in West Africa remains centered on the human populations in Guinea, Sierra Leone, and Liberia, wildlife experts’ concern is mounting over the virus’ favorite victims: great apes.

Guinea, where the epidemic originated, has the largest population of chimpanzees in all of West Africa. Liberia is close behind. Central Africa is home to western lowland gorillas, the largest and most widespread of all four species. Due to forest density, the number of those infected is unknown. But with hundreds of thousands of ape casualties from Ebola, it’s doubtful they’ve escaped unscathed.

Animal activists are ramping up efforts to find an Ebola vaccine for great apes, but with inadequate international support for human research, their mission could be seen as competing with one to save humans. Experts from the Jane Goodall Institute of Canada insist such apprehension would be misplaced. Two streams of funding—one for humans, one for apes—can coexist in this epidemic, they assert, and must.

“The media was really focusing on human beings,” Sophie Muset, project manager for JGI, says. “But it has been traumatic to [the great ape] population for many years.”

Over the course of just four decades, Ebola has wiped out one third of the world’s population of chimpanzees and gorillas, which now stand at less than 300,000 and 95,000 respectively.

The first large-scale “die-offs” due to Ebola began in the late 1990s, and haven’t stopped. Over the course of just four decades, Ebola has wiped out one third of the world’s population of chimpanzees and gorillas, which now stand at less than 300,000 and 95,000 respectively. Both species are now classified as endangered by the International Union for Conservation of Nature; western gorillas are “critically” so.

One of earliest Ebola “die-offs” of great apes came in 1994, when an Ebola outbreak in Minkébé decimated the region’s entire population—once the second largest in the world. In 2002, an outbreak in the Democratic Republic of Congo wiped out 95 percent of the region’s gorilla population. And an equally brutal attack broke out in 2006, when Ebola Zaire in Gabon (the same strain as the current outbreak) left an estimated 5,000 gorillas dead.

The dwindling population of both species, combined with outside poaching threats, means Ebola poses a very real threat to their existence. To evaluate the damage thus far, the Wild Chimpanzee Foundation is conducting population assessments in West Africa, with the goal of getting a rough estimate of how many have died. Given the combined damage that Ebola has inflicted on this population, the results are likely to be troubling.

In a way, great apes are Ebola’s perfect victims. Acutely tactile mammals, their dynamic social environments revolve around intimacy with each other. Touching hands, scratching backs, hugging, kissing, and tickling, they are near constantly intertwined—giving Ebola a free ride.

In a May 2007 study from The American Naturalist, researchers studying the interactions between chimpanzees and gorillas found evidence the Ebola can even spread between the social groups. At three different sites in northern Republic of Congo, they found bacteria from gorillas and chimps on the same fruit trees. For a virus that spreads through bodily fluids, this is an ideal scenario.

“They live in groups [and] they are very close,” says Muset, who has worked with chimps on the ground in Uganda and the DRC. “Since Ebola transmission happens through body fluids, it spreads very fast.”

For gorillas in particular, this culture proves deadly, making their mortality rate for this virus closer to  95 percent. But like humans, the corpses of chimpanzees and gorillas remain contagious with Ebola for days. While the chimps and gorillas infected with Ebola will likely die in a matter of days, the virus can live on in their corpse for days—in turn, spreading to humans who eat or touch their meat.

It is one such interaction that could result in the spread from apes to humans. But in this particular outbreak, experts have zeroed in on the fruit bat (believed to be the original carrier) as the source. The index patient, a 2-year-old in Guinea, was reportedly playing on a tree with a fruit bat colony.

Whether or not a great ape was involved in the transmission of the virus to humans during this outbreak is unknown. Such an interaction is possible. Interestingly, however, it’s not the risk that great apes with Ebola pose to humans that wildlife experts find most concerning. It’s the risk that their absence poses to the wild.

Owing to a diet consisting mostly of fruit, honey, and leaves, gorillas and chimpanzees are crucial to forest life. Inadvertently distributing seeds and pollen throughout the forest, they stimulate biodiversity within it. Without them, the biodiversity of the vegetation may plummet, endangering all of the species that relied on it—and, in turn, the people that relied on them.

“They are not the only ones who act as seed dispersers,” says Muset. “But they are the big players in that field. So when [a die-off] happens, it can decimate an entire forest.”

Wildlife experts worldwide are working to raise both awareness and funds for a vaccination process. It’s a battle that she says was gaining speed last January, when a researcher announced that he had found a vaccine that could work in chimps But as the epidemic in West Africa grew, the focus shifted.

But Muset says its time to return to the project. “There is a vaccine, but it has never been tested on chimpanzees,” she says.  “Progress has been made, and preliminary testing done, but testing in the field need to happen to make it real.”

As to the question of whether it’s ethical to be searching for a vaccine for wild animals when humans are still suffering as well, Muset is honest. “For sure there is a direct competition here. But wildlife and humans have a lot of diseases in common that they can transmit from one to the other,” she says. “And I think you can think of it as two streams of funding, one to wildlife and the other to human beings.”

While it’s great apes that wildlife experts are seeking to save, human nature as a whole, Muset argues, is at stake. “If you want a healthy ecosystem, the more you have to invest in health for wildlife and humans,” she says. “Then, the better place it will be.  Because really, it all works together.”

CNPq cria Rede para otimizar produção de animais em laboratórios (JC)

Rebiotério prevê estimular produção e assegurar qualidade nos biotérios

Ao mesmo tempo em que corre para desenvolver métodos alternativos a fim de reduzir o número de animais em testes de laboratórios –  pela chamada Rede Nacional de Métodos Alternativos (RENAMA) – o governo decidiu criar uma Rede para adequar a produção em biotérios de todos os animais para propósitos científicos e didáticos, como ratos, camundongos e coelhos.

A intenção é atender de forma adequada e organizada à demanda nacional. O entendimento é de que o uso de animais ainda é imprescindível nos testes in vivo e que hoje existe um desequilíbrio entre a oferta e a procura no País, em razão do aumento considerável da produção científica nacional.

Na  prática, o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), principal agência financiadora de pesquisa experimental do País, criou a chamada Rede Nacional de Biotérios de Produção de Animais para Fins Científicos, Didáticos e Tecnológicos (Rebiotério), informou Marcelo Morales, diretor da área de Ciências Agrárias, Biológicas e da Saúde do CNPq e que comandará a rede, com exclusividade ao Jornal da Ciência.

A Rebiotério, segundo Morales, vai mapear, monitorar,   otimizar e dar suporte à produção de animais utilizados em experimentos científicos e em sala de aula. Todos  os biotérios distribuídos pelo País serão cadastrados na rede. Para Morales, essa é uma tentativa de atender aos anseios da comunidade científica pela pesquisa de qualidade envolvendo animais.

Sem querer estimar o número de animais produzidos hoje em laboratórios, para fins científicos, Morales destaca a atual necessidade da produção qualificada de animais em biotérios de produção para atender a demanda científica. Hoje, segundo disse, pesquisadores aguardam na fila um período de dois a cinco meses para receber animais com qualidade (principalmente os desprovidos de patógenos, Specific Pathogen Free – SPF) e que possam ser utilizados em experimentos científicos.  Atualmente,  a produção com qualidade é vinculada apenas a alguns biotérios que os produzem para atender as próprias necessidades e poucos são aqueles que produzem para outras Instituições.   Além disso, a importação desses animais se torna inviável, diante de barreiras sanitárias e do alto custo de importação.

No caso de roedores, responsáveis por cerca de 70% do total de animais utilizados em pesquisas científicas, Morales afirmou que a necessidade estimada de produção é de 5 milhões/ano desses animais.

Normas e legislações 

Além de propor políticas de fomento para a produção de animais em biotérios qualificados, a Rebiotério prevê, ainda, acompanhar a implementação efetiva de normas e legislações especificas adotadas para uso de animais em experimentos científicos, conjuntamente com o  Conselho Nacional de Controle de Experimentação Animal (Concea). Deverá também estimular a qualidade de produção nos  biotérios e atender aos padrões internacionais de boas práticas de bem-estar animal.

Outra função é assegurar o controle sanitário e genético, averiguando o nível de patógenos, por exemplo, e reforçar os padrões éticos adotados para os animais produzidos em biotérios.

Capacitação profissional

Para garantir a qualidade de produção dos biotérios, a Rebiotério terá o papel, dentre outros, de estimular a capacitação e qualificação de profissionais da área no exterior e no Brasil (bioteristas, veterinários, pesquisadores e etc). Assim, garantir que a produção de animais seja compatível com os padrões internacionais.

“Nossa intenção é fortalecer a produção de animais de experimentação, com ética e qualidade, fazendo com o que o País torne-se referência nessa área no mundo”, disse Morales, também professor associado da Universidade Federal do Rio de Janeiro (UFRJ), ex-coordenador do Conselho Nacional de Controle de Experimentação Animal (Concea) e ex-presidente da Sociedade Brasileira de Biofísica (SBBF).

Para fazer frente a tais desafios, o CNPq aprovou a viabilidade de parcerias internacionais que possam assegurar a produção sustentável e de qualidade nos biotérios. A intenção é ampliar o interesse de empresas internacionais, com expertise em tal área, que hoje já organizam e negociam instalação no Brasil.

Segundo Morales, a parceria com empresas estrangeiras pode ser por intermédio de transferência de tecnologia relacionada às práticas modernas de bioterismo; e pelo apoio à formação de pesquisadores e técnicos brasileiros dessa área no exterior.

Sem querer entrar no mérito do orçamento do CNPq, Morales informou que a qualificação desses profissionais pode ocorrer também pelas bolsas do Programa Ciência sem Fronteiras.

Composição da Rebiotério

Além do CNPq, a Rebiotério será composta pela comunidade científica, pela Secretaria de Políticas e Programas de Pesquisa e Desenvolvimento do Ministério da Ciência, Tecnologia e Inovação (Seped/MCTI); e Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (SCTIE), do Ministério da Saúde. Terá ainda participação do Conselho Nacional de Controle de Experimentação Animal (CONCEA), órgão vinculado ao MCTI, e de membros da Finep (Financiadora de Estudos e Projetos).

Da comunidade científica, haverá representantes da Sociedade Brasileira de Ciência em Animais de Laboratórios (SBCAL), da Sociedade Brasileira para o Progresso da Ciência (SBPC), da Academia Brasileira de Ciências (ABC) e do Conselho Nacional das Fundações Estaduais de Amparo à Pesquisa (Confap).

“Nossa intenção é que a rede tenha uma abrangência nacional”, observa Morales.

(Viviane Monteiro/ Jornal da Ciência)

Study of ancient dogs in the Americas yields insights into human, dog migration (Science Daily)

Date: January 7, 2015

Source: University of Illinois at Urbana-Champaign

Summary: A new study suggests that dogs may have first successfully migrated to the Americas only about 10,000 years ago, thousands of years after the first human migrants crossed a land bridge from Siberia to North America.

New evidence suggests dogs arrived in the Americas only about 10,000 years ago. Some believe the ancient dogs looked a lot like present-day dingos. Credit: Angus McNab

A new study suggests that dogs may have first successfully migrated to the Americas only about 10,000 years ago, thousands of years after the first human migrants crossed a land bridge from Siberia to North America.

The study looked at the genetic characteristics of 84 individual dogs from more than a dozen sites in North and South America, and is the largest analysis so far of ancient dogs in the Americas. The findings appear in the Journal of Human Evolution.

Unlike their wild wolf predecessors, ancient dogs learned to tolerate human company and generally benefited from the association: They gained access to new food sources, enjoyed the safety of human encampments and, eventually, traveled the world with their two-legged masters. Dogs also were pressed into service as beasts of burden, and sometimes were served as food, particularly on special occasions.

Their 11,000- to 16,000-year association with humans makes dogs a promising subject for the study of ancient human behavior, including migratory behavior, said University of Illinois graduate student Kelsey Witt, who led the new analysis with anthropology professor Ripan Malhi.

“Dogs are one of the earliest organisms to have migrated with humans to every continent, and I think that says a lot about the relationship dogs have had with humans,” Witt said. “They can be a powerful tool when you’re looking at how human populations have moved around over time.”

Human remains are not always available for study “because living populations who are very connected to their ancestors in some cases may be opposed to the destructive nature of genetic analysis,” Witt said. Analysis of ancient dog remains is often permitted when analysis of human remains is not, she said.

Previous studies of ancient dogs in the Americas focused on the dogs’ mitochondrial DNA, which is easier to obtain from ancient remains than nuclear DNA and, unlike nuclear DNA, is inherited only from the mother. This means mitochondrial DNA offers researchers “an unbroken line of inheritance back to the past,” Witt said.

The new study also focused on mitochondrial DNA, but included a much larger sample of dogs than had been analyzed before.

Molecular anthropologist Brian Kemp of Washington State University provided new DNA samples from ancient dog remains found in Colorado and British Columbia, and the Illinois State Archaeological Survey (ISAS) provided 35 samples from a site in southern Illinois known as Janey B. Goode, near present-day St. Louis. The Janey B. Goode site is located near the ancient city Cahokia, the largest and first known metropolitan area in North America. Occupation of the Janey B. Goode site occurred between 1,400 and 1,000 years ago, the researchers said, while Cahokia was active from about 1,000 to 700 years ago.

Dozens of dogs were ceremonially buried at Janey B. Goode, suggesting that people there had a special reverence for dogs. While most of the dogs were buried individually, some were placed back-to-back in pairs.

In Cahokia, dog remains, sometimes burned, are occasionally found with food debris, suggesting that dogs were present and sometimes were consumed. Dog burials during this time period are uncommon.

As previous studies had done, the Illinois team analyzed genetic signals of diversity and relatedness in a special region (the hypervariable region) of the mitochondrial genome of ancient dogs from the Americas. University of Iowa anthropology professor Andrew Kitchen contributed significantly to this analysis.

The researchers found four never-before-seen genetic signatures in the new samples, suggesting greater ancient dog diversity in the Americas than previously thought. They also found unusually low genetic diversity in some dog populations, suggesting that humans in those regions may have engaged in dog breeding.

In some samples, the team found significant genetic similarities with American wolves, indicating that some of the dogs interbred with or were domesticated anew from American wolves.

But the most surprising finding had to do with the dogs’ arrival in the Americas, Witt said.

“Dog genetic diversity in the Americas may date back to only about 10,000 years ago,” she said.

“This also is about the same time as the oldest dog burial found in the Americas,” Malhi said. “This may not be a coincidence.”

The current study, of only a small part of the mitochondrial genome, likely provides an incomplete picture of ancient dog diversity in the Americas, Malhi said.

“The region of the mitochondrial genome sequenced may mask the true genetic diversity of indigenous dogs in the Americas, resulting in the younger date for dogs when compared with humans,” he said.

More studies of ancient dogs are in the works, the researchers said. Witt has already sequenced the full mitochondrial genomes of 20 ancient dogs, and more are planned to test this possibility, the researchers said.

Journal Reference:

  1. Kelsey E. Witt, Kathleen Judd, Andrew Kitchen, Colin Grier, Timothy A. Kohler, Scott G. Ortman, Brian M. Kemp, Ripan S. Malhi. DNA analysis of ancient dogs of the Americas: Identifying possible founding haplotypes and reconstructing population historiesJournal of Human Evolution, 2014; DOI: 10.1016/j.jhevol.2014.10.012

Carnivorismo (Portal do Meio Ambiente)




Por Maurício Andrés Ribeiro

Cadeias alimentares são as transferências de energia alimentar desde os produtores básicos – as plantas –, para os animais herbívoros – consumidores primários –, até os animais carnívoros que se alimentam dos herbívoros ou de outros carnívoros. A cada degrau que se sobe na cadeia trófica, há perdas de energia. As plantas absorvem e metabolizam cerca de 1% da energia solar que sobre elas incidem. Os animais herbívoros aproveitam cerca de 10% da energia contida nos vegetais. Os animais carnívoros ou os seres humanos que se alimentam de carne de animais aproveitam apenas 10% da energia que eles absorveram dos vegetais.


O homem está entre as espécies que absorvem energia de vários elos da cadeia alimentar e tem uma diversidade de dietas alimentares, em função do ambiente em que vivem de seus hábitos culturais, de seus valores espirituais ou religiosos. Há seres humanos onívoros, carnívoros, frutívoros, vegetarianos, veganos etc e uma combinação deles. O carnivorismo é o habito sistemático de comer carne e a defesa de tal hábito.O carnivorismo se espalha pelo mundo de modo diferenciado conforme mostra o mapa anexo. Nos países em vermelho se come mais de 30 kg per capita de carne bovina por ano. À medida que aumenta a renda média, tende a aumentar o consumo per capita de carne, o que é ainda estimulado por campanhas de propaganda do carnivorismo nas TVs, nos jornais, em revistas e na internet.


A dieta alimentar baseada em proteínas animais, quando comparada a dietas baseadas em grãos, hortaliças e proteína vegetal, tem elevado custo energético e sua produtividade energética é baixa. A demanda por alimentos que se encontram no alto da cadeia alimentar – constituídos pelos produtos de origem animal – consome grande quantidade de terra, água, recursos naturais e defensivos agrícolas; motiva os fazendeiros a expandir as áreas destinadas a pastagens, provoca a destruição de florestas e perdas de solo fértil. Os impactos ambientais de uma dieta carnívora são maiores do que os de uma dieta baseada em produtos vegetais.

No Brasil, pressão sobre as florestas e desmatamento decorrem do plantio de soja para alimentar animais na China ou da pecuária para exportar carne ou abastecer o mercado interno.

04Várias sociedades regularam suas dietas como estratégia para não romper a capacidade de suporte do seu território e reduzir os riscos de colapso. A Índia é uma das mais conhecidas, com o vegetarianismo e a sacralização dos animais. Diamond (2005, p. 356) relata o caso da ilha de Tikopia, no Pacífico Sul, com 4,7km2 e densidade de 309 pessoas por quilômetro quadrado, continuamente habitada há quase três mil anos. Uma das estratégias para garantir a capacidade de sustentação do ambiente foi a mudança de hábitos alimentares, eliminando aqueles que implicam competição pelo uso da terra:

Uma decisão significativa tomada conscientemente por volta de 1.600 d.C, e registrada pela tradição oral, mas também atestada arqueologicamente, foi a matança de todos os porcos da ilha, substituídos como fonte de proteína pelo aumento do consumo de peixe, moluscos e tartarugas.

Tikopia e a India são exemplos de sociedades que superaram o carnivorismo ao constatarem os benefícios sociais que essas mudanças de hábitos alimentares trariam. Aquilo que a Índia estruturou há milênios e o que os ilhéus de Tikopia decidiram há algumas centenas de anos, pode ser uma decisão sábia de ser adotada globalmente no contexto das mudanças climáticas e da atual crise da evolução. Uma das vozes que defende esse caminho é Lovelock (Gaia-Alerta final, pg. 80) que observa

“Nossos líderes, se fossem todos excelentes e poderosos poderiam proibir a manutenção de animais de estimação e gado, tornar compulsória a dieta vegetariana e incentivar um grande programa de síntese de alimentos por indústrias químicas e bioquímicas; fazer isso apenas restringirá a perda de vida a animais de estimação e gado. É alentador que o presidente do IPCC, Dr. Pachauri, tenha recomendado uma dieta vegetariana como um caminho a seguir.”

Atualmente cresce a consciência e os alertas sobre esse tema. O biólogo Erlich (1999, p. 10) afirma que “a capacidade de suporte do planeta seria aumentada se todos se tornassem predominantemente vegetarianos”. O professor E. O. Wilson, de Harvard, em seu livro “O Futuro da vida” expressa as vantagens de renunciar ao consumo de carne: “Se todos aceitassem uma dieta vegetariana, o atual 1,4 bilhão de hectares de terras aráveis seria suficiente para produzir alimentos para 10 bilhões de pessoas.” O vegetarianismo poupa espaço, recursos naturais e o meio ambiente, conseguindo, com baixo uso de recursos naturais, um alto rendimento energético alimentar.

A mudança de dieta alimentar é um processo cultural e encontra resistências em hábitos arraigados. O prazer da mesa é um aspecto sensorial que produz apego e constitui um obstáculo à aceitação de argumentos racionais, como os baseados na ecologia energética, nas perdas de energia que ocorrem nas cadeias alimentares, nos impactos ambientais devastadores associados ao consumo de carnes.

No contexto da crise alimentar, climática, ecológica e hídrica, hábitos alimentares de baixo consumo de proteína animal podem facilitar o acesso da população humana a alimentos e ao mesmo tempo não pressionarem excessivamente a capacidade de suporte do planeta. Superar o carnivorismo é um passo em direção à sustentabilidade no planeta. A mega crise da evolução atual, da qual as mudanças climáticas são um dos aspectos, clama por evolução da consciência humana que induza a mudanças de hábitos tão básicos e elementares como o de se alimentar.

How pace of climate change will challenge ectotherms (Science Daily)

Date: December 9, 2014

Source: University of Sydney

Summary: Scientists have analyzed 40 years of data to outline climate change challenge for ectotherms (animals who rely on external sources of heat to control body temperature). The research showed that many groups of ectotherms, which make up more than 90 percent of all animals, are able to change their physiological function to cope with an altered environment, but the rapid pace and fluctuations of human-induced climate change present serious challenges.

Turtles sunning themselves (stock image). Turtles are ectotherms, one of many that will be threatened by climate change, researchers say. Credit: © xoanon / Fotolia

Animals that regulate their body temperature through the external environment may be resilient to some climate change but not keep pace with rapid change, leading to potentially disastrous outcomes for biodiversity.

A study by the University of Sydney and University of Queensland showed many animals can modify the function of their cells and organs to compensate for changes in the climate and have done so in the past, but the researchers warn that the current rate of climate change will outpace animals’ capacity for compensation (or acclimation).

The research has just been published in Nature Climate Change (Letters), written by Professor Frank Seebacher School of Biological Sciences and Professor Craig Franklin and Associate Professor Craig White from the University of Queensland.

Adapting to climate change will not just require animals to cope with higher temperatures. The predicted increase to fluctuations in temperature as well as to overall temperature would require animals to function across a broader range of conditions. This is particularly important for ectotherms, animals that rely on external sources of heat to control body temperature, and are therefore more influenced by environmental temperatures.

The research showed that many groups of ectotherms, which make up more than 90 percent of all animals, are able to change their physiological function to cope with an altered environment, but the rapid pace and fluctuations of human-induced climate change present serious challenges.

The researchers studied 40 years of published data to assess how biological functions change in response to a sudden fluctuations in environmental temperatures. They found that the physiological rates of ectothermic animals, such as heart rate, metabolism and locomotion, had already increased over the past 20 years with increasing average temperatures.

“It is important that animals maintain the right balance between the large number of physiological functions despite environmental fluctuations. An increase in temperature that leads to changed reaction rates can upset that balance and cause the decline of individuals and species,” said Professor Seebacher. “For example, movement requires energy and oxygen to be delivered to muscles. However, if metabolism or the cardiovascular system can’t cope with increased temperatures, animals can no longer move to forage, migrate or interact with each other.

“The overall trend in the last 20 years has been to increased physiological rates, and we predict that this would continue to increase with increasing temperature. “Even if animals are able to maintain the balance of their physiological functions in a warmer climate, increased metabolism leads to increases in the food resources needed and could upset the balance in ecosystems, particularly if predator and prey populations respond very differently to the environmental temperature change.”

Journal Reference:

  1. Frank Seebacher, Craig R. White, Craig E. Franklin. Physiological plasticity increases resilience of ectothermic animals to climate changeNature Climate Change, 2014; DOI: 10.1038/nclimate2457

Projeto proíbe criação de animais em confinamento (Portal do Meio Ambiente)


9753 9753b

A Comissão de Meio Ambiente da Assembleia Legislativa do Estado de São Paulo (ALESP) aprovou o projeto de lei 714/12, de autoria do deputado Feliciano Filho (PEN), que proíbe a criação de animais em sistema de confinamento.

Confinamento é o sistema de criação em que lotes de animais são colocados em piquetes ou locais com área restrita, impossibilitando-os de expressar seu comportamento natural e o pleno atendimento de suas necessidades físicas e mentais. Esse sistema de criação visa acelerar a engorda, aumentando a produtividade e diminuindo os custos do negócio.

“Esse sistema vem se intensificando em nome do ganho de produtividade. Mas ele é perverso com os animais, provocando lesões e estresse. Muitos passam a vida sem ver o sol ou a natureza. Apenas nascem, sofrem e morrem”, explica Feliciano.

Relatório da Humane Society International aponta que “o confinamento intensivo desses sistemas de produção prejudica severamente o bem-estar dos animais, pois são incapazes de se exercitar, de esticar completamente seus membros, ou de se envolver em muitos comportamentos naturais importantes. Como resultado da restrição severa desses sistemas de alojamento monótonos, os animais podem experimentar significativa e prolongadas agressões físicas e psicológicas. Além disso, extensiva evidência científica mostra que os animais confinados intensamente são frustrados, angustiados e sofredores.”

Segundo o texto, “produtividade não é sinônimo de bem-estar, igualar um ao outro não tem respaldo científico. A produtividade é muitas vezes medida em nível de grupo, o que não reflete com exatidão o bem-estar individual.”

No Brasil, as práticas mais comuns de confinamento são as gaiolas em bateria, celas de gestação e gaiolas para bezerros, utilizados, respectivamente, para galinhas poedeiras, porcas prenhes e bezerros criados para vitela.

A União Europeia, através de processos graduais, eliminou tais práticas até 2013. Nos Estados Unidos, os estados do Colorado, Arizona, Flórida, Oregon e Califórnia também têm coibido o confinamento.

Gaiolas em Bateria – As gaiolas em bateria são pequenas enclausuras de arame, que portam de 5 a 10 aves. Cada animal se restringe a um espaço médio de 430 a 550 centímetros quadrados, algo similar a uma folha de papel carta. Dessa forma, ficam impedidas de realizar seus comportamentos naturais, tornando-se inativas, em um chão estéril de gaiola. Tais restrições severas causam, além de estresse, a má condição do pé e distúrbios metabólicos como osteoporose e danos hepáticos.

Celas de Gestação – As porcas reprodutoras passam os quatro meses de prenhez nas chamadas celas de gestação, jaulas individuais com piso de concreto que medem, em geral, 0,6 x 2,1 metros. Pouco maior que o próprio animal, é tão severamente restritiva que a impede até mesmo de se virar. Os riscos desse tipo de confinamento são infecção do trato urinário, ossos enfraquecidos, claudicação e alterações comportamentais.

Gaiolas para bezerros – O confinamento intensivo de bezerros é realizado para a produção de vitela (corte de animal jovem). O animal de raça de leite é criado até 16 a 18 semanas de idade, período em que chegam a pesar cerca de 200 quilos, e destinados à indústria de carne. Somente uma pequena porcentagem é criada até a maturidade e utilizada para reprodução. Os vitelos são mantidos em gaiolas individuais com cerca de 70 centímetros de largura, amarrados na parte da frente da gaiola com uma coleira curta. Ficam com os movimentos restritos e impedidos de se deitar da maneira mais confortável às suas necessidades. A falta de exercícios regulares leva ao comprometimento do desenvolvimento ósseo e muscular, assim como à doenças nas articulações.

Cães e gatos – Em muitos canis e gatis, oficiais e clandestinos, as matrizes são mantidas confinadas em gaiolas, por toda a vida, sem receber luz do Sol e podadas da possibilidade de se mover de acordo com as necessidades anatômicas, fisiológicas, biológicas e etológicas. Muitas desenvolvem transtornos comportamentais irreversíveis.

Penalidades – O projeto de lei determina que o descumprimento das disposições será punido com pagamento de multa de 2.000 UFESP – Unidade Fiscal do Estado de São Paulo por animal (R$ 40.280,00), valor que dobrará em caso de reincidência. Poderá ainda ser realizada a apreensão do animal ou do lote, a suspensão temporária do alvará de funcionamento, assim como sua suspensão definitiva de acordo com a progressão do caso.

O projeto autoriza o Estado a reverter os valores recolhidos para custeio das ações, publicações e conscientização da população sobre guarda responsável e direitos dos animais, para instituições, abrigos ou santuários de animais, ou para programas estaduais de controle populacional ou que visem à proteção e bem-estar dos animais.

Fonte: Proteção Animal.