Arquivo da tag: Socialidade animal

When Whales and Humans Talk (Hakai Magazine)

Arctic people have been communicating with cetaceans for centuries—and scientists are finally taking note.

Tattooed Whale, 2016 by Tim Pitsiulak. Screen-print on Arches Cover Black. Reproduced with the permission of Dorset Fine ArtsApril 3rd, 2018

Harry Brower Sr. was lying in a hospital bed in Anchorage, Alaska, close to death, when he was visited by a baby whale.

Although Brower’s body remained in Anchorage, the young bowhead took him more than 1,000 kilometers north to Barrow (now Utqiaġvik), where Brower’s family lived. They traveled together through the town and past the indistinct edge where the tundra gives way to the Arctic Ocean. There, in the ice-blue underwater world, Brower saw Iñupiat hunters in a sealskin boat closing in on the calf’s mother.

Brower felt the shuddering harpoon enter the whale’s body. He looked at the faces of the men in the umiak, including those of his own sons. When he awoke in his hospital bed as if from a trance, he knew precisely which man had made the kill, how the whale had died, and whose ice cellar the meat was stored in. He turned out to be right on all three counts.

Brower lived six years after the episode, dying in 1992 at the age of 67. In his final years, he discussed what he had witnessed with Christian ministers and Utqiaġvik’s whaling captains. The conversations ultimately led him to hand down new rules to govern hunting female whales with offspring, meant to communicate respect to whales and signal that people were aware of their feelings and needs. “[The whale] talked to me,” Brower recalls in a collection of his stories, The Whales, They Give Themselves. “He told me all the stories about where they had all this trouble out there on the ice.”

Not long ago, non-Indigenous scientists might have dismissed Brower’s experience as a dream or the inchoate ramblings of a sick man. But he and other Iñupiat are part of a deep history of Arctic and subarctic peoples who believe humans and whales can talk and share a reciprocal relationship that goes far beyond that of predator and prey. Today, as Western scientists try to better understand Indigenous peoples’ relationships with animals—as well as animals’ own capacity for thoughts and feelings—such beliefs are gaining wider recognition, giving archaeologists a better understanding of ancient northern cultures.

“If you start looking at the relationship between humans and animals from the perspective that Indigenous people themselves may have had, it reveals a rich new universe,” says Matthew Betts, an archaeologist with the Canadian Museum of History who studies Paleo-Eskimo cultures in the Canadian Arctic. “What a beautiful way to view the world.”

It’s not clear exactly when people developed the technology that allowed them to begin hunting whales, but scholars generally believe Arctic whaling developed off the coast of Alaska sometime between 600 and 800 CE. For thousands of years before then, Arctic people survived by hunting seals, caribou, and walruses at the edge of the sea ice.

One such group, the Dorset—known in Inuit oral tradition as the Tunitwere rumored to have been so strong the men could outrun caribou and drag a 1,700-kilogram walrus across the ice. The women were said to have fermented raw seal meat against the warmth of their skin, leaving it in their pants for days at a time. But despite their legendary survival skills, the Tunit died out 1,000 years ago.An Inuit hunter sits on a whale that’s been hauled to shore for butchering in Point Hope, Alaska, in 1900. Photo by Hulton Deutsch/Getty Images

An Inuit hunter sits on a whale that’s been hauled to shore for butchering in Point Hope, Alaska, in 1900. Photo by Hulton Deutsch/Getty Images

One theory for their mysterious disappearance is that they were outcompeted by people who had begun to move east into the Canadian Arctic—migrants from Alaska who brought sealskin boats allowing them to push off from shore and hunt whales. Each spring, bowhead whales weighing up to 54,000 kilograms pass through the leads of water that open into the sea ice, and with skill and luck, the ancestors of today’s Inuit and Iñupiat people could spear a cetacean as it surfaced to breathe.

The advent of whaling changed the North. For the first time, hunters could bring in enough meat to feed an entire village. Permanent settlements began springing up in places like Utqiaġvik that were reliably visited by bowheads—places still inhabited today. Social organizations shifted as successful whale hunters amassed wealth, became captains, and positioned themselves at the top of a developing social hierarchy. Before long, the whale hunt became the center of cultural, spiritual, and day-to-day life, and whales the cornerstone of many Arctic and subarctic cosmologies.

When agricultural Europeans began visiting and writing about the North in the 10th century, they were mesmerized by Aboriginal peoples’ relationships with whales. Medieval literature depicted the Arctic as a land of malevolent “monstrous fishes” and people who could summon them to shore through magical powers and mumbled spells. Even as explorers and missionaries brought back straightforward accounts of how individual whaling cultures went about hunting, butchering, and sharing a whale, it was hard to shake the sense of mysticism. In 1938, American anthropologist Margaret Lantis analyzed these scattered ethnographic accounts and concluded that Iñupiat, Inuit, and other northern peoples belonged to a circumpolar “whale cult.”

Lantis found evidence of this in widespread taboos and rituals meant to cement the relationship between people and whales. In many places, a recently killed whale was given a drink of fresh water, a meal, and even traveling bags to ensure a safe journey back to its spiritual home. Individual whalers had their own songs to call the whales to them. Sometimes shamans performed religious ceremonies inside circles made of whale bones. Stashes of whaling amulets—an ambiguous word used to describe everything from carved, jewelry-like charms to feathers or skulls—were passed from father to son in whaling families.

To non-Indigenous observers, it was all so mysterious. So unknowable. And for archaeologists and biologists especially, it was at odds with Western scientific values, which prohibited anything that smacked of anthropomorphism.
A whaler waits for the bowhead whales from shore in Utqiaġvik, Alaska, during whaling season in the Chukchi Sea. Photo by Steven J. Kazlowski/Alamy Stock Photo

A whaler waits for the bowhead whales from shore in Utqiaġvik, Alaska, during whaling season in the Chukchi Sea. Photo by Steven J. Kazlowski/Alamy Stock Photo

In archaeology, such attitudes have limited our understanding of Arctic prehistory, says Erica Hill, a zooarchaeologist with the University of Alaska Southeast. Whaling amulets and bone circles were written off as ritualistic or supernatural with little exploration of what they actually meant to the people who created them. Instead, archaeologists who studied animal artifacts often focused on the tangible information they revealed about what ancient people ate, how many calories they consumed, and how they survived.

Hill is part of a burgeoning branch of archaeology that uses ethnographic accounts and oral histories to re-examine animal artifacts with fresh eyes—and interpret the past in new, non-Western ways. “I’m interested in this as part of our prehistory as humans,” Hill says, “but also in what it tells us about alternative ways of being.”

The idea that Indigenous people have spiritual relationships with animals is so well established in popular culture it’s cliché. Yet constricted by Western science and culture, few archaeologists have examined the record of human history with the perspective that animals feel emotions and can express those emotions to humans.

Hill’s interest in doing so was piqued in 2007, when she was excavating in Chukotka, Russia, just across the Bering Strait from Alaska. The site was estimated to be 1,000 to 2,000 years old, predating the dawn of whaling in the region, and was situated at the top of a large hill. As her team dug through the tundra, they uncovered six or seven intact walrus skulls deliberately arranged in a circle.

Like many archaeologists, Hill had been taught that ancient humans in harsh northern climates conserved calories and rarely expended energy doing things with no direct physical benefit. That people were hauling walrus skulls to a hilltop where there were plenty of similar-sized rocks for building seemed strange. “If you’ve ever picked up a walrus skull, they’re really, really heavy,” Hill says. So she started wondering: did the skulls serve a purpose that wasn’t strictly practical that justified the effort of carrying them uphill?

When Hill returned home, she began looking for other cases of “people doing funky stuff” with animal remains. There was no shortage of examples: shrines packed with sheep skulls, ceremonial burials of wolves and dogs, walrus-skull rings on both sides of the Bering Strait. To Hill, though, some of the most compelling artifacts came from whaling cultures.

Museum collections across North America, for instance, include a dazzling array of objects categorized as whaling amulets. From this grab bag, Hill identified 20 carved wooden objects. Many served as the seats of whaling boats. In the Iñupiaq language, they’re called either iktuġat or aqutim aksivautana, depending on dialect.

One in particular stands out. Hill was looking for Alaskan artifacts in a massive climate-controlled warehouse belonging to Smithsonian’s National Museum of Natural History in Washington, DC. The artifacts were housed in hundreds of floor-to-ceiling drawers, row after row of them, with little indication of what was inside. She pulled open one drawer and there it was—the perfect likeness of a bowhead whale staring back at her.

The object, likely from the late 19th century, probably functioned as a crosspiece. It was hewn from a hunk of driftwood into a crescent shape 21 centimeters long. Carved on one side was a bowhead, looking as it would look if you were gazing down on a whale from above, perhaps from a raven’s-eye perspective. A precious bead of obsidian was embedded in the blowhole. “It’s so elegant and simple but so completely whale,” Hill says. “It’s this perfect balance of minimalism and form.”

Sometime in the late 19th century, an Iñupiat carver fashioned this seat for an umiak out of driftwood, carving the likeness of a bowhead whale, its blowhole symbolized with a piece of obsidian. Photo by Department of Anthropology, Smithsonian Institute (Cat. A347918)Sometime in the late 19th century, an Iñupiaq carver fashioned this amulet for an umiak out of driftwood, carving the likeness of a bowhead whale, its blowhole symbolized with a piece of obsidian. As with other whaling amulets Erica Hill has examined, this object may have also functioned as part of the boat’s structure. Photo by Department of Anthropology, Smithsonian Institute (Cat. A347918)

Using Iñupiat oral histories and ethnographies recorded in the 19th and 20th centuries, Hill now knows that such amulets were meant to be placed in a boat with the likeness of the whale facing down, toward the ocean. The meticulously rendered art was thus meant not for humans, but for whales—to flatter them, Hill says, and call them to the hunters. “The idea is that the whale will be attracted to its own likeness, so obviously you want to depict the whale in the most positive way possible,” she explains.

Yupik stories from St. Lawrence Island tell of whales who might spend an hour swimming directly under an umiak, positioning themselves so they could check out the carvings and the men occupying the boat. If the umiak was clean, the carvings beautiful, and the men respectful, the whale might reposition itself to be harpooned. If the art portrayed the whale in an unflattering light or the boat was dirty, it indicated that the hunters were lazy and wouldn’t treat the whale’s body properly. Then the whale might swim away.

In “Sounding a Sea-Change: Acoustic Ecology and Arctic Ocean Governance” published in Thinking with Water, Shirley Roburn quotes Point Hope, Alaska, resident Kirk Oviok: “Like my aunt said, the whales have ears and are more like people,” he says. “The first batch of whales seen would show up to check which ones in the whaling crew would be more hospitable. … Then the whales would come back to their pack and tell them about the situation.”

The belief that whales have agency and can communicate their needs to people isn’t unique to the Arctic. Farther south, on Washington’s Olympic Peninsula and British Columbia’s Vancouver Island, Makah and Nuu-chah-nulth whalers observed eight months of rituals meant to communicate respect in the mysterious language of whales. They bathed in special pools, prayed, spoke quietly, and avoided startling movements that might offend whales. Right before the hunt, the whalers sang a song asking the whale to give itself.

In Makah and Nuu-chah-nulth belief, as in many Arctic cultures, whales weren’t just taken—they willingly gave themselves to human communities. A whale that offered its body wasn’t sentencing itself to death. It was choosing to be killed by hunters who had demonstrated, through good behavior and careful adherence to rituals, that they would treat its remains in a way that would allow it to be reborn. Yupik tradition, for example, holds that beluga whales once lived on land and long to return to terra firma. In exchange for offering itself to a Yupik community, a beluga expected to have its bones given the ritualistic treatment that would allow it to complete this transition and return to land, perhaps as one of the wolves that would gnaw on the whale’s bones.

According to Hill, many of the objects aiding this reciprocity—vessels used to offer whales a drink of fresh water, amulets that hunters used to negotiate relationships with animal spirits—weren’t just reserved for shamanistic ceremonies. They were part of everyday life; the physical manifestation of an ongoing, daily dialogue between the human and animal worlds.

While Westerners domesticated and eventually industrialized the animals we eat—and thus came to view them as dumb and inferior—Arctic cultures saw whale hunting as a match between equals. Bipedal humans with rudimentary technology faced off against animals as much as 1,000 times their size that were emotional, thoughtful, and influenced by the same social expectations that governed human communities. In fact, whales were thought to live in an underwater society paralleling that above the sea.

a bowhead whale swimming amid multi-layer sea ice

It’s difficult to assess populations of animals that swim under the ice, far from view, like bowhead whales. But experienced Iñupiat whalers are good at it. Photo by Steven Kazlowski/Minden Pictures

Throughout history, similar beliefs have guided other human-animal relationships, especially in hunter-gatherer cultures that shared their environment with big, potentially dangerous animals. Carvings left behind by the Tunit, for example, suggest a belief that polar bears possessed a kind of personhood allowing them to communicate with humans; while some Inuit believed walruses could listen to humans talking about them and react accordingly.

Whether or not those beliefs are demonstrably true, says Hill, they “make room for animal intelligence and feelings and agency in ways that our traditional scientific thinking has not.”

Today, as archaeologists like Hill and Matthew Betts shift their interpretation of the past to better reflect Indigenous worldviews, biologists too are shedding new light on whale behavior and biology that seems to confirm the traits Indigenous people have attributed to whales for more than 1,000 years. Among them is Hal Whitehead, a professor at Dalhousie University in Nova Scotia who argues that cetaceans have their own culture—a word typically reserved for human societies.

By this definition, culture is social learning that’s passed down from one generation to the next. Whitehead finds evidence for his theory in numerous recent studies, including one that shows bowhead whales in the North Pacific, off the Alaskan coast, and in the Atlantic Ocean near Greenland sing different songs, the way human groups might have different styles of music or linguistic dialects. Similarly, pods of resident killer whales living in the waters off south Vancouver Island greet each other with different behaviors than killer whales living off north Vancouver Island, despite the fact that the groups are genetically almost identical and have overlapping territories.

Plus, calves spend years with their mothers, developing the strong mother-offspring bonds that serve to transfer cultural information, and bowhead whales live long enough to accumulate the kind of environmental knowledge that would be beneficial to pass on to younger generations. We know this largely because of a harpoon tip that was found embedded in a bowhead in northern Alaska in 2007. This particular harpoon was only manufactured between 1879 and 1885 and wasn’t used for long after, meaning that the whale had sustained its injury at least 117 years before it finally died.

Other beliefs, too, are proving less farfetched than they once sounded. For years, scientists believed whales couldn’t smell, despite the fact that Iñupiat hunters claimed the smell of woodsmoke would drive a whale away from their camp. Eventually, a Dutch scientist dissecting whale skulls proved the animals did, indeed, have the capacity to smell. Even the Yupik belief that beluga whales were once land-dwelling creatures is rooted in reality: some 50 million years ago, the ancestor of modern-day whales walked on land. As if recalling this, whale fetuses briefly develop legs before losing them again.

An Inuit hunter sits on a whale that’s been hauled to shore for butchering in Point Hope, Alaska, in 1900. Photo by Hulton Deutsch/Getty ImagesInuit hunters in Utqiaġvik, Alaska, paddle an umiak after a bowhead whale. Photo by Galen Rowell/Getty Images

None of this suggests that whales freely give themselves to humans. But once you understand the biological and intellectual capabilities of whales—as whaling cultures surely did—it’s less of a leap to conclude that cetaceans live in their own underwater society, and can communicate their needs and wishes to humans willing to listen.

With the dawn of the 20th century and the encroachment of Euro-Americans into the North, Indigenous whaling changed drastically. Whaling in the Makah and Nuu-chah-nulth Nations essentially ended in the 1920s after commercial whalers hunted the gray whale to near extinction. In Chukotka, Russian authorities in the 1950s replaced community-based whaling with state-run whaling.

Even the whaling strongholds of Alaska’s Iñupiat villages weren’t immune. In the 1970s, the International Whaling Commission ordered a halt to subsistence bowhead whaling because US government scientists feared there were just 1,300 of the animals left. Harry Brower Sr. and other whaling captains who’d amassed lifetimes of knowledge knew that figure was wrong.

But unlike other whaling cultures, Iñupiat whalers had the means to fight back, thanks to taxes they had collected from a nearby oil boom. With the money, communities hired Western-trained scientists to corroborate traditional knowledge. The scientists developed a new methodology that used hydrophones to count bowhead whales beneath the ice, rather than extrapolating the population based on a count of the visible bowheads passing by a single, ice-free locale. Their findings proved bowheads were far more numerous than the government had previously thought, and subsistence whaling was allowed to continue.

Elsewhere, too, whaling traditions have slowly come back to life. In 1999, the Makah harvested their first whale in over 70 years. The Chukchi were allowed to hunt again in the 1990s.

Yet few modern men knew whales as intimately as Brower. Although he eschewed some traditions—he said he never wanted his own whaling song to call a harpooned whale to the umiak, for exampleBrower had other ways of communicating with whales. He believed that whales listened, and that if a whaler was selfish or disrespectful, whales would avoid him. He believed that the natural world was alive with animals’ spirits, and that the inexplicable connection he’d felt with whales could only be explained by the presence of such spirits.

And he believed that in 1986, a baby whale visited him in an Anchorage hospital to show him how future generations could maintain the centuries-long relationship between humans and whales. Before he died, he told his biographer Karen Brewster that although he believed in a Christian heaven, he personally thought he would go elsewhere. “I’m going to go join the whales,” he said. “That’s the best place, I think. … You could feed all the people for the last time.”

Perhaps Brower did become a whale and feed his people one last time. Or perhaps, through his deep understanding of whale biology and behavior, he passed down the knowledge that enabled his people to feed themselves for generations to come. Today, the spring whaling deadline he proposed based on his conversation with the baby whale is still largely observed, and bowhead whales continue to sustain Iñupiat communities, both physically and culturally.

Correction: This article has been updated to clarify the original purpose of the whaling amulet that caught Erica Hill’s attention in the Smithsonian warehouse.

Author bio Krista Lee Langlois is an independent journalist, essayist, and “aquaphile.” She lived in the Marshall Islands in 2006 and now writes about the intersection of people and nature from a landlocked cabin outside Durango, Colorado.


Orcas can imitate human speech, research reveals (The Guardian)

Killer whales able to copy words such as ‘hello’ and ‘bye bye’ as well as sounds from other orcas, study shows

High-pitched, eerie and yet distinct, the sound of a voice calling the name “Amy” is unmistakable. But this isn’t a human cry – it’s the voice of a killer whale called Wikie.

New research reveals that orcas are able to imitate human speech, in some cases at the first attempt, saying words such as “hello”, “one, two” and “bye bye”.

The study also shows that the creatures are able to copy unfamiliar sounds produced by other orcas – including a sound similar to blowing a raspberry.

Scientists say the discovery helps to shed light on how different pods of wild killer whales have ended up with distinct dialects, adding weight to the idea that they are the result of imitation between orcas. The creatures are already known for their ability to copy the movements of other orcas, with some reports suggesting they can also mimic the sounds of bottlenose dolphins and sea lions.

“We wanted to see how flexible a killer whale can be in copying sounds,” said Josep Call, professor in evolutionary origins of mind at the University of St Andrews and a co-author of the study. “We thought what would be really convincing is to present them with something that is not in their repertoire – and in this case ‘hello’ [is] not what a killer whale would say.”

Wikie is not the first animal to have managed the feat of producing human sounds: dolphins, elephants, parrots, orangutans and even beluga whales have all been captured mimicking our utterances, although they use a range of physical mechanisms to us to do so. Noc, the beluga whale, made novel use of his nasal cavities, while Koshik, an Indian elephant jammed his trunk in his mouth, resulting in the pronouncement of Korean words ranging from “hello” to “sit down” and “no”.

But researchers say only a fraction of the animal kingdom can mimic human speech, with brain pathways and vocal apparatus both thought to determine whether it is possible.

“That is what makes it even more impressive – even though the morphology [of orcas] is so different, they can still produce a sound that comes close to what another species, in this case us, can produce,” said Call.

He poured cold water, however, on the idea that orcas might understand the words they mimic. “We have no evidence that they understand what their ‘hello’ stands for,” he said.

Writing in the journal Proceedings of the Royal Society B: Biological Sciences, researchers from institutions in Germany, UK, Spain and Chile, describe how they carried out the latest research with Wikie, a 14-year-old female orca living in an aquarium in France. She had previously been trained to copy actions performed by another orca when given a human gesture.

After first brushing up Wikie’s grasp of the “copy” command, she was trained to parrot three familiar orca sounds made by her three-year old calf Moana.

Wikie was then additionally exposed to five orca sounds she had never heard before, including noises resembling a creaking door and the blowing a raspberry.

Finally, Wikie was exposed to a human making three of the orca sounds, as well as six human sounds, including “hello”, “Amy”, “ah ha”, “one, two” and “bye bye”.

“You cannot pick a word that is very complicated because then I think you are asking too much – we wanted things that were short but were also distinctive,” said Call.

Throughout the study, Wikie’s success was first judged by her two trainers and then confirmed from recordings by six independent adjudicators who compared them to the original sound, without knowing which was which.

The team found that Wikie was often quickly able to copy the sounds, whether from an orca or a human, with all of the novel noises mimicked within 17 trials. What’s more, two human utterances and all of the human-produced orca sounds were managed on the first attempt – although only one human sound – “hello” – was correctly produced more than 50% of the time on subsequent trials.

The matching was further backed up through an analysis of various acoustic features from the recordings of Wikie’s sounds.

While the sounds were all made and copied when the animals’ heads were out of the water, Call said the study shed light on orca behaviour.

“I think here we have the first evidence that killer whales may be learning sounds by vocal imitation, and this is something that could be the basis of the dialects we observe in the wild – it is plausible,” said Call, noting that to further test the idea, trials would have to be carried out with wild orcas.

Diana Reiss, an expert in dolphin communication and professor of psychology at Hunter College, City University of New York, welcomed the research, noting that it extends our understanding of orcas’ vocal abilities, with Wikie able to apply a “copy” command learned for imitation of actions to imitation of sounds.

Dr Irene Pepperberg, an expert in parrot cognition at Harvard University, also described the study as exciting, but said: “A stronger test would have been whether the various sounds produced could be correctly classified by humans without the models present for comparison.”

Cultura primata (Revista Fapesp)

Transmissão de práticas de uso de ferramentas por macacos-prego ajuda a repensar o papel das tradições na evolução


Podcast: Eduardo Ottoni

Com uma pedra erguida acima da cabeça, o jovem Porthos bate vigorosamente no chão arenoso de modo a abrir um buraco. Seu objetivo: uma aranha, que logo consegue desentocar e rola entre as mãos para tontear a presa que em seguida come. Ele é um macaco-prego da espécie Sapajus libidinosus, habitante do Parque Nacional Serra da Capivara, no Piauí, e objeto de estudo de pesquisadores do Instituto de Psicologia da Universidade de São Paulo (IP-USP). O biólogo Tiago Falótico tem caracterizado o uso de ferramentas por esses animais (ver Pesquisa FAPESP nº 196) e mostrou, em artigo publicado em julho na revista Scientific Reports, que a ação do jovem macho envolve conhecimento, aprendizado e transmissão de práticas culturais – ou tradições, como alguns preferem chamar quando os sujeitos não são humanos – dentro de grupos sociais. A pesquisa está no bojo de um corpo teórico que busca entrelaçar biologia, ciências sociais e humanas e recém-desembocou na formação da Sociedade de Evolução Cultural. Sua reunião inaugural acaba de acontecer na Alemanha, entre 13 e 15 de setembro.

Até agora, o uso de pedras como ferramentas para cavar só foi documentado nessa população. Especialmente quando se trata de desentocar aranhas, é preciso experiência. O estudo, resultado de observações feitas durante o doutorado de Falótico, encerrado em 2011 sob orientação do biólogo Eduardo Ottoni, mostra que quase 60% dos adultos e jovens (como Porthos) têm sucesso na tarefa. Macacos juvenis (o correspondente a crianças), por outro lado, só conseguem em pouco mais de 30% dos casos. Isso acontece porque é preciso reconhecer o revestimento de seda que fecha a toca do aracnídeo, sinal de que o habitante está lá dentro. “Os juvenis às vezes cavam uma toca que acabou de ser aberta por outro macaco”, conta Falótico. Estruturas subterrâneas, parecidas com batatas, da planta conhecida como farinha-seca (Thiloa glaucocarpa), também são desenterradas com mais eficiência pelos adultos. Já as raízes de louro (Ocotea), outro alimento desses primatas, apesar de envolverem o uso de pedras maiores, não parecem apresentar um desafio especial para os aprendizes. Macacos dos dois sexos se mostraram igualmente capazes de cavar com pedras, com uma taxa de sucesso equivalente, embora eles pareçam ter mais interesse pela atividade: entre as 1.702 situações observadas, 77% envolviam machos e apenas 23%, fêmeas.

“Esperávamos encontrar uma correlação entre o uso de ferramentas e a escassez de alimentos, mas não foi o que vimos”, conta Falótico. Se os macacos da serra da Capivara encontram algo comestível que exija o uso de ferramentas, recorrem a elas. Seu modo de vida, em que passam metade do tempo no chão rodeados de pedras e gravetos, parece ser propício ao desenvolvimento das habilidades. Mas não é só isso. Embora não haja diferença entre os sexos nos hábitos alimentares, as fêmeas nunca usam gravetos – que seus companheiros masculinos utilizam para desentocar lagartos de frestas e retirar insetos de troncos, por exemplo. Há diferença apenas, aparentemente, no interesse. “Quando um macho vê outro usar uma vareta, ele observa atento; já uma fêmea, mesmo que esteja ao lado daquele usando a ferramenta, não se interessa e olha para o outro lado!”

Os macacos da mesma espécie que habitam a fazenda Boa Vista, em Gilbués, cerca de 300 quilômetros (km) para sudoeste, têm tradições distintas no uso de ferramentas. Ali, uma área com mais influência de Cerrado do que Caatinga, as pedras são menos abundantes, mas necessárias (e usadas) para quebrar cocos. Gravetos estão por toda parte, mas não têm uso. Essa diferença cultural entre grupos de macacos foi explorada em um experimento feito pelo psicólogo Raphael Moura Cardoso durante o doutorado, orientado por Eduardo Ottoni, e relatado em artigo de 2016 na Biology Letters. Eles puseram – tanto na fazenda Boa Vista como na serra da Capivara – caixas de acrílico recheadas de melado de cana. O único jeito de retirar a guloseima era por meio de uma fenda no alto com largura suficiente apenas para varetas. “Na serra da Capivara, um macho logo acertou uma pedrada na caixa”, lembra Ottoni, que, previdente, tinha planejado o aparato “à prova de macaco-prego”. “Quando nada aconteceu, ele largou a pedra, coçou a cabeça e pegou um graveto.” Ele brinca que nem precisou editar o vídeo para mostrar em um congresso – foi uma ação contínua e imediata. Ao longo de cinco dias de exposição à caixa, 10 dos 14 machos usaram o graveto logo na primeira sessão, e apenas os três mais jovens não foram bem-sucedidos. Os demais conseguiram um sucesso de 90% na empreitada. As fêmeas não tentaram, assim como os macacos da fazenda Boa Vista. Lá, os pesquisadores até tentaram ajudar: depois de seis horas expostos à tarefa, os macacos deparavam com um graveto já fincado na fenda. Mesmo tirando e lambendo o melado da ponta, nenhum deles voltou a inserir a ferramenta na caixa ao longo de 13 dias de experimento. Uma surpresa foi que os macacos da Boa Vista, exímios quebradores de coco, não tentaram partir a caixa. “Eu esperava isso deles, não dos outros”, diz Ottoni.

Aprendizado social

Os resultados, surpreendentes, podem reforçar a importância da transmissão de tradições entre os macacos. A capa da edição de 25 de julho deste ano da revista PNAS traz justamente a foto de um macaco-prego da fazenda Boa Vista comendo uma castanha que conseguiu quebrar com a ajuda de uma grande pedra redonda, observado de perto por um jovem. A imagem anuncia a coletânea especial sobre como a cultura se conecta à biologia, da qual faz parte um artigo do grupo liderado pelas primatólogas Patrícia Izar, do IP-USP, Dorothy Fragaszy, da Universidade da Georgia, nos Estados Unidos, e Elisabetta Visalberghi, do Instituto de Ciências e Tecnologias Cognitivas, na Itália, sobre os macacos da fazenda Boa Vista, que estudam sistematicamente desde 2006. Nas observações recolhidas ao longo desse tempo, chama a atenção a tolerância dos adultos em relação aos jovens aprendizes que olham de perto e até comem pedaços dos cocos partidos. “Os adultos competem pelos recursos e os imaturos podem ficar perto”, conta Patrícia. As análises publicadas no artigo recente mostram muito mais do que proximidade: os quebradores de coco influenciam a atividade dos outros, sobretudo os jovens, que também começam a manipular pedras e cocos. Isso dura alguns minutos. “A tradição canaliza a atividade para o mesmo tipo de ação importante para essa tradição”, define.

Patrícia ressalta que os macacos nascem nesse contexto. “Muitas vezes vemos filhotes nas costas das mães enquanto elas quebram”, conta. Com esse aprendizado contínuo, acabam se tornando especialistas na tarefa. Mas não basta observar, e daí a importância de os filhotes serem atraídos pela ação dos adultos – principalmente os mais eficazes. “O sucesso passa pela percepção da tarefa e das propriedades da ferramenta”, detalha, descrevendo um complexo corpo-ferramenta em que é constantemente necessário ajustar força, gestos e postura. Quando quebram tucum, um coquinho menos resistente, os macacos ajustam a força das pancadas depois de ouvirem o som da superfície rachando, o grupo mostrou em artigo do ano passado na Animal Behaviour. Para cocos mais difíceis, eles escolhem pedras que podem chegar a ser mais pesadas do que o próprio corpo. E a seleção da pedra é criteriosa, conforme mostrou um experimento em que Patrícia e seu grupo forneceram pedras artificiais com diferentes tamanhos, pesos e densidades. As pedras grandes logo atraíam a atenção dos macacos, mas se fossem pouco densas – mais leves do que aparentavam – eram abandonadas. “Eles têm a percepção de que o peso é importante na quebra”, diz Patrícia.

Tolerância: macho adulto da fazenda Boa Vista come castanha partida observado de perto por jovem

Essas sociedades primatas alteram o ambiente. Macacos escolhem pedras ou troncos achatados como base para quebrar coco, e para lá carregam as raras pedras grandes e duras que encontram no ambiente. Essa conformação é importante não só por criar oficinas de quebra, mas por canalizar a possibilidade de aprendizado, já que todos sabem onde a atividade acontece e pode ser observada. “Não faz sentido pensar em maturação motora independente do contexto social, alimentar”, afirma a bióloga Briseida Resende, também do IP-USP e coautora do artigo da PNAS. O desenvolvimento individual depende das experiências de cada um, de suas capacidades físicas e do acervo acumulado pelo grupo, no qual uma inovação criada pode se disseminar, perpetuar-se e fazer parte da cultura mantida por gerações. Resende defende que indivíduo e sociedade são indissociáveis, embora historicamente tenham sido vistos como entidades distintas.

Teoria revista

Reunir a evolução cultural e a biológica é justamente o foco da síntese estendida, agora sedimentada com a fundação, em 2016, da Sociedade de Evolução Cultural – o primeiro presidente é o zoólogo Peter Richerson, da Universidade da Califórnia em Davis, cujo grupo privilegia a estatística. Essa visão conjunta amplia o olhar evolutivo, já que a transmissão de ideias ou inovações não se dá apenas de pais para filhos e pode trazer vantagens seletivas favorecendo as capacidades cognitivas e sociais relevantes. Considera também que a cultura pode influenciar aspectos físicos, como a conformação e o tamanho do cérebro, ou o desenvolvimento de habilidades que por sua vez sedimentam o comportamento. Os genes e a cultura, duas vias de transmissão de informação, relacionam-se, portanto, por uma via de mão dupla.

Jovens aprendizes tentam tirar proveito de escavação feita por fêmea

A oportunidade de ver comportamentos surgirem e se espalhar é rara, e por isso abordagens experimentais que provocam inovações são um acréscimo importante aos comportamentos diversos dos macacos-prego do Piauí. Ferramentas estatísticas recentes podem ajudar a aprofundar essa compreensão, como a Análise de Difusão Baseada em Redes (Network-Based Diffusion Analysis) que o grupo de Ottoni começa a usar. “O programa monta uma rede social aleatória e compara à real”, explica o pesquisador, que torna as análises mais robustas inserindo características medidas nos sujeitos em causa. Em agosto de 2016 ele apresentou, no congresso da Sociedade Primatológica Internacional, em Chicago, resultados do experimento feito pela bióloga Camila Coelho durante doutorado orientado por ele com um período passado na Universidade de Durham, no Reino Unido, para aprender o método. Os resultados indicam que, no caso dos macacos-prego, o aprendizado social prevê a difusão de informação na espécie.

Até meio século atrás, o uso de ferramentas era considerado privilégio humano. Ao observar chimpanzés na Tanzânia, a inglesa Jane Goodall derrubou essa exclusividade e, de certa maneira, causou a redefinição das fronteiras entre gente e bicho. Muito se descobriu de lá para cá, mas falar em cultura animal ainda esbarra em certo desconforto. Talvez não por muito mais tempo.

O uso de pedras para escavar só foi descrito na serra da Capivara

Sob o comando de hormônios

O cuidado com os filhotes está ligado ao hormônio oxitocina em mamíferos. O grupo liderado por Maria Cátira Bortolini, da Universidade Federal do Rio Grande do Sul, descreveu há poucos anos as variações na molécula de oxitocina em espécies de macacos nas quais há bons pais (ver Pesquisa FAPESP 228). Ensaios farmacológicos feitos no laboratório do bioquímico Claudio Costa-Neto, da Faculdade de Medicina de Ribeirão Preto da USP, agora desvendaram o caminho da oxitocina dentro das células e verificaram que os receptores das formas alteradas ficam mais expostos nas membranas das células, de maneira que o sistema não se dessensibiliza. “É como se o macaco recebesse constantemente a instrução ‘tenho que cuidar dos filhotes’”, explica Cátira. Faz diferença para a sobrevivência de saguis, que frequentemente têm filhotes gêmeos, por exemplo.

O resultado está em artigo publicado em agosto na PNAS, que também descreve o resultado da aplicação dessas oxitocinas em ratos por meio de borrifadas nasais, experimento realizado em colaboração com o fisiologista Aldo Lucion, da UFRGS. As fêmeas lactantes, já inundadas de oxitocina, alteraram pouco o comportamento. Mas os machos tratados com o hormônio alteraram radicalmente o hábito de ignorar os filhotes e correram para cheirá-los, uma reação que foi três vezes mais rápida com a oxitocina de sagui.

Os cebídeos, família que inclui os macacos-prego, também têm um tipo de oxitocina que aumenta a propensão à paternidade ativa. Os grupos de Cátira e de Ottoni recentemente iniciaram uma colaboração para investigar as características genéticas em machos mais e menos cuidadores. “Já conseguimos extrair material genético de amostras de fezes e estamos selecionando genes candidatos a serem rastreados”, conta ela, fascinada com a tolerância dos machos e as habilidades cognitivas dos primatas do Piauí. “A capacidade de inovar, por um lado, e a de sentar e observar, por outro, são necessárias para o desenvolvimento e a transmissão de traços culturais adaptativos e certamente há um cenário genético por trás disso.”

1. Uso de ferramentas por macacos-prego (Sapajus libidinosus) selvagens: Ecologia, aprendizagem socialmente mediada e tradições comportamentais (nº 14/04818-0); Modalidade Projeto Temático; Pesquisador responsável Eduardo Benedicto Ottoni (USP); Investimento R$ 609.276,69.2. Variabilidade de comportamento social de macacos-prego (gênero Cebus): Análise comparativa entre populações para investigação de correlatos fisiológicos (nº 08/55684-3); Modalidade Auxílio à Pesquisa – Regular; Pesquisadora responsável Patrícia Izar (USP); Investimento R$ 186.187,33.
3. Desenvolvimento de novos ligantes/drogas com ação agonística seletiva (biased agonism) para receptores dos sistemas renina-angiotensina e calicreínas-cininas: Novas propriedades e novas aplicações biotecnológicas (nº 12/20148-0); ModalidadeProjeto Temático; Pesquisador responsável Claudio Miguel da Costa Neto (USP); Investimento R$ 3.169.674,21.

Artigos científicos
FALÓTICO, T. et alDigging up food: excavation stone tool use by wild capuchin monkeysScientific Reports. v. 7, n. 1, 6278. 24 jul. 2017.
CARDOSO, R. M. e OTTONI, E. B. The effects of tradition on problem solving by two wild populations of bearded capuchin monkeys in a probing task. Biology Letters. v. 12, n. 11, 20160604. nov. 2016.
FRAGASZY, D. M. et alSynchronized practice helps bearded capuchin monkeys learn to extend attention while learning a traditionPNAS. v. 114, n. 30, p. 7798-805. 25 jul. 2017.
MANGALAM, M., Izar, et alTask-specific temporal organization of percussive movements in wild bearded capuchin monkeysAnimal Behaviour. v. 114, p. 129–137. abr. 2016.
PARREIRAS-E-SILVA, L. T. et alFunctional new world monkey oxytocin forms elicit na altered signaling profile and promotes parental care in ratsPNAS. v. 114, n. 34, p. 9044-49. 22 ago. 2017.
VISALBERGHI, E. et al. Selection of effective stone tools by wild bearded capuchin monkeys (Cebus libidinosus)Current Biology, v. 19, n. 3, p. 213-17. 10 fev. 2009.

The Value of a Gorilla vs. a Human (Huff Post Green)

 05/31/2016 05:11 pm ET

Bron Taylor

Author, ‘Dark Green Religion: Nature Spirituality and the Planetary Future’


An individual gorilla is more valuable than an individual human being.

What is your response to that statement?

I have seen no such argument in response to the death of Harambe, the Western Lowland Gorilla who was shot on 28 May at the Cincinnati Zoo. Zookeepers understandably feared for the life of a child who entered his enclosure. The incident has created furor.

Mainstream media depicted the shooting as a tragic necessity because the child was at risk of grievous harm or death. Whether implicitly felt or explicitly stated, the assumption was that the life of this child was more valuable than the life of this gorilla.

This was the view of Jack Hannah, the well-known conservationist and former director of the Columbus Zoo. In a host of interviews he clearly stated that the decision to kill Harambe was an easy call because every human life is more valuable than any animal life.

For her part, the child’s mother, after insisting that she is a responsible parent, asserted on Facebook, “God protected my child until the authorities were able to get to him.” Then she thanked those who saved her son and “most importantly God for being the awsome (sic) God that he is.” She apparently believed that God had intervened, even at the price of the Gorilla’s life.

She did not explain why God did not elect to protect her son by more peaceful means, such as, by preventing him from climbing into the enclosure.

In contrast, a host of critics was outraged by the killing and what they considered the mother’s negligence.

Especially upset were animal rights proponents, who base the value of animals on emotional, or cognitive traits they are believed to share with us, or on their capacity to suffer. For them, the great apes, our closest biological cousins, have rights that deserve respect, foremost, the right to life.

But I could find no one making a reasoned argument that this gorilla’s life was more valuable than that of this human child.

Some environmental philosophers and scientists, however, contend that an individual member of an endangered species is more valuable than an individual human being. Or, as conservation biologist Reed Noss put it to me recently, the value of an individual decreases proportionately with the size of its population.

Such arguments are premised upon an understanding that the viability of a species is associated with the variety of genes in its population: With few exceptions, the greater its genetic diversity the greater will be a species’ resilience in the face of diseases or environmental threats. But the smaller the population is, the higher is the risk of extinction. Consequently, every individual matters.

So, if one starts from an ethical claim that humanity ought not drive other species off the planet, and add scientific understandings about the value of an individual organism to the viability of its species, an endangered animal such as Harambe could be considered more valuable than one that is not valuable in this way.

The argument is as worth pondering . . . and so are our reactions to it.

Our reactions to the value of humans and other animals are typically shaped by culturally deep religious roots.

Put simply, most large human civilizations have religious roots and strong constituencies, which either view humans as a special creation of God, or consider humans to have become the highest and most valuable life forms by leading meritorious past lives.

Whatever ground for felt ethical obligations toward non-human organisms there might be given such premises, when push comes to shove, human lives come first.

In contemporary environmental philosophy, such views are termed anthropocentrism or literally, human-centered ethics.

That is a nice way of putting it.

But it is really the ideology of human supremacy.

Harambe’s demise may not provide a perfect fit for considering the proposition with which I began my provocation. The Zoo had frozen semen taken from him because it is part an international consortium that understands the importance of genetic diversity for efforts to save endangered species. Moreover, Western Lowland Gorillas have more habitat and greater numbers than great apes that are on the very brink of extinction.

But Harambe may have a greater conservation legacy than his genes being posthumously passed on through an endangered species breeding program. Hopefully, this tragic event will increase public awareness of the accelerating extinction crisis and the importance of preserving habitat for wild Gorillas, and protecting endangered species in captive breeding programs.

And perhaps, this case will help those who are skeptical of the religious ideas that undergird human supremacy to leave them behind, once and for all.

It may be that corresponding conservation policies and efforts would follow is such a value transformation spreads.

Indeed, there are signs just such a transformation is under way. It can be seen in the work of Dian Fossey who risked her life and was killed while trying to protect endangered Gorillas, and as rangers are empowered by law to use lethal force against poachers. So, we have examples where the lives of endangered species are considered to be more valuable than at least some human lives.

I hope that zoos will soon, and universally, be on the leading edge of this transformation, rather than reinforcing ancient and self-serving human conceits.

What I Learned From Tickling Apes (New York Times)

Laughter? Now wait a minute! A real scientist should avoid any and all anthropomorphism, which is why hard-nosed colleagues often ask us to change our terminology. Why not call the ape’s reaction something neutral, like, say, vocalized panting? That way we avoid confusion between the human and the animal.

The term anthropomorphism, which means “human form,” comes from the Greek philosopher Xenophanes, who protested in the fifth century B.C. against Homer’s poetry because it described the gods as though they looked human. Xenophanes mocked this assumption, reportedly saying that if horses had hands they would “draw their gods like horses.” Nowadays the term has a broader meaning. It is typically used to censure the attribution of humanlike traits and experiences to other species. Animals don’t have “sex,” but engage in breeding behavior. They don’t have “friends,” but favorite affiliation partners.

Given how partial our species is to intellectual distinctions, we apply such linguistic castrations even more vigorously in the cognitive domain. By explaining the smartness of animals either as a product of instinct or simple learning, we have kept human cognition on its pedestal under the guise of being scientific. Everything boiled down to genes and reinforcement. To think otherwise opened you up to ridicule, which is what happened to Wolfgang Köhler, the German psychologist who, a century ago, was the first to demonstrate flashes of insight in chimpanzees.

Köhler would put a banana outside the enclosure of his star performer, Sultan, while giving him sticks that were too short to reach the fruit through the bars. Or he would hang a banana high up and spread boxes around, none of which were tall enough to reach the fruit. At first, Sultan would jump or throw things at the banana or drag a human by the hand toward it, hoping to use him as a footstool. If this failed, he would sit around without doing anything, pondering the situation, until he might hit on a solution. He’d jump up suddenly to put one bamboo stick inside another, making a longer stick. He’d also stack boxes to build a tower tall enough to attain his reward. Köhler described this moment as the “aha! experience,” not unlike Archimedes running through the streets shouting “Eureka!”

According to Köhler, Sultan showed insight by combining what he knew about boxes and sticks to produce a brand-new action sequence to take care of his problem. It all took place in his head, without prior rewards for his eventual solution. That animals may show mental processes closer to thinking than learning was so unsettling, though, that still today Köhler’s name is hissed rather than spoken in some circles. Naturally, one of his critics argued that the attribution of reasoning to animals was an “overswing of the theoretical pendulum” back “toward anthropomorphism.”

We still hear this argument, not so much for tendencies that we consider animalistic (everyone is free to speak of aggression, violence and territoriality in animals) but rather for traits that we like in ourselves. Accusations of anthropomorphism are about as big a spoiler in cognitive science as suggestions of doping are of athletic success. The indiscriminate nature of these accusations has been detrimental to cognitive science, as it has kept us from developing a truly evolutionary view. In our haste to argue that animals are not people, we have forgotten that people are animals, too.

This doesn’t mean that anything goes. Humans are incredibly eager to project feelings and experiences onto animals, often doing so uncritically. We go to beach hotels to swim with dolphins, convinced that the animals must love it as much as we do. We think that our dog feels guilt or that our cat is embarrassed when she misses a jump. Lately, people have fallen for the suggestion that Koko, the signing gorilla in California, is worried about climate change, or that chimpanzees have religion. As soon as I hear such claims, I contract my corrugator muscles (causing a frown) and ask for the evidence. Yes, dolphins have smiley faces, but since this is an immutable part of their visage, it fails to tell us anything about how they feel. Yes, dogs hide under the table when they have done something wrong, yet the most likely explanation is that they fear trouble.

Gratuitous anthropomorphism is distinctly unhelpful. However, when experienced field workers who follow apes around in the tropical forest tell me about the concern chimpanzees show for an injured companion, bringing her food or slowing down their walking pace, or report how adult male orangutans in the treetops vocally announce which way they expect to travel the next morning, I am not averse to speculations about empathy or planning. Given everything we know from controlled experiments in captivity, such as the ones I conduct myself, these speculations are not far-fetched.

To understand the resistance to cognitive explanations, I need to mention a third ancient Greek: Aristotle. The great philosopher put all living creatures on a vertical Scala Naturae, which runs from humans (closest to the gods) down toward other mammals, with birds, fish, insects and mollusks near the bottom. Comparisons up and down this vast ladder have been a popular scientific pastime, but all we have learned from them is how to measure other species by our standards. Keeping Aristotle’s scale intact, with humans on top, has been the unfailing goal.


But think about it: How likely is it that the immense richness of nature fits on a single dimension? Isn’t it more likely that each animal has its own cognition, adapted to its own senses and natural history? It makes no sense to compare our cognition with one that is distributed over eight independently moving arms, each with its own neural supply, or one that enables a flying organism to catch mobile prey by picking up the echoes of its own shrieks. Clark’s nutcrackers (members of the crow family) recall the location of thousands of seeds that they have hidden half a year before, while I can’t even remember where I parked my car a few hours ago. Anyone who knows animals can come up with a few more cognitive comparisons that are not in our favor. Instead of a ladder, we are facing an enormous plurality of cognitions with many peaks of specialization. Somewhat paradoxically, these peaks have been called “magic wells” because the more scientists learn about them, the deeper the mystery gets.

We now know, for example, that some crows excel at tool use. In an aviary at Oxford University in 2002, a New Caledonian crow named Betty tried to pull a little bucket with a piece of meat out of a transparent vertical pipe. All she had to work with was a straight metal wire, which didn’t do the trick. Undeterred, Betty used her beak to bend the straight wire into a hook to pull up the bucket. Since no one had taught Betty to do so, it was seen as an example of insight. Apart from dispelling the “birdbrain” notion with which birds are saddled, Betty achieved instant fame by offering proof of tool making outside the primate order. Since this capacity has by now been confirmed by other studies, including one on a cockatoo, we can safely do away with the 1949 book “Man the Tool-Maker” by the British anthropologist Kenneth Oakley, which declared tool fabrication humanity’s defining characteristic. Corvids are a technologically advanced branch on the tree of life with skills that often match those of primates like us.

Convergent evolution (when similar traits, like the wings of birds, bats and insects, appear independently in separate evolutionary branches) allows cognitive capacities to pop up at the most unexpected places, such as face recognition in paper wasps or deceptive tactics in cephalopods. When the males of some cuttlefish species are interrupted by a rival during courtship, they may trick the latter into thinking there is nothing to worry about. On the side of his body that faces his rival, the male adopts the coloring of a female, so that the other believes he is looking at two females. But the courting male keeps his original coloring on the female’s side of his body in order to keep her attention. This two-faced tactic, known as dual-gender signaling, suggests tactical skills of an order no one had ever suspected in a species so low on the natural scale. But of course, talk of “high” and “low” is anathema to biologists, who see every single organism as exquisitely adapted to its own environment.

Now let us return to the accusation of anthropomorphism that we hear every time a new discovery comes along. This accusation works only because of the premise of human exceptionalism. Rooted in religion but also permeating large areas of science, this premise is out of line with modern evolutionary biology and neuroscience. Our brains share the same basic structure with other mammals — no different parts, the same old neurotransmitters.

Brains are in fact so similar across the board that we study fear in the rat’s amygdala to treat human phobias. This doesn’t mean that the planning by an orangutan is of the same order as me announcing an exam in class and my students preparing for it, but deep down there is continuity between both processes. This applies even more to emotional traits.

This is why science nowadays often starts from the opposite end, assuming continuity between humans and animals, while shifting the burden of proof to those who insist on differences. Anyone who asks me to believe that a tickled ape, who almost chokes on his hoarse giggles, is in a different state of mind than a tickled human child has his work cut out for him.

In order to drive this point home, I invented the term “anthropodenial,” which refers to the a priori rejection of humanlike traits in other animals or animallike traits in us. Anthropomorphism and anthropodenial are inversely related: The closer another species is to us, the more anthropomorphism assists our understanding of this species and the greater will be the danger of anthropodenial. Conversely, the more distant a species is from us, the greater the risk that anthropomorphism proposes questionable similarities that have come about independently. Saying that ants have “queens,” “soldiers” and “slaves” is mere anthropomorphic shorthand without much of a connection to the way human societies create these roles.

THE key point is that anthropomorphism is not nearly as bad as people think. With species like the apes — aptly known as “anthropoids” (humanlike) — anthropomorphism is in fact a logical choice. After a lifetime of working with chimpanzees, bonobos and other primates, I feel that denial of the similarities is a greater problem than accepting them. Relabeling a chimpanzee kiss “mouth-to-mouth contact” obfuscates the meaning of a behavior that apes show under the same circumstances as humans, such as when they greet one another or reconcile after a fight. It would be like assigning Earth’s gravity a different name than the moon’s, just because we think Earth is special.

Unjustified linguistic barriers fragment the unity with which nature presents us. Apes and humans did not have enough time to independently evolve almost identical behavior under similar circumstances. Think about this the next time you read about ape planning, dog empathy or elephant self-awareness. Instead of denying these phenomena or ridiculing them, we would do better to ask “why not?”

One reason this whole debate is as heated as it is relates to its moral implications. When our ancestors moved from hunting to farming, they lost respect for animals and began to look at themselves as the rulers of nature. In order to justify how they treated other species, they had to play down their intelligence and deny them a soul. It is impossible to reverse this trend without raising questions about human attitudes and practices. We can see this process underway in the halting of biomedical research on chimpanzees and the opposition to the use of killer whales for entertainment.

Increased respect for animal intelligence also has consequences for cognitive science. For too long, we have left the human intellect dangling in empty evolutionary space. How could our species arrive at planning, empathy, consciousness and so on, if we are part of a natural world devoid of any and all steppingstones to such capacities? Wouldn’t this be about as unlikely as us being the only primates with wings?

Evolution is a gradual process of descent with modification, whether we are talking about physical or mental traits. The more we play down animal intelligence, the more we ask science to believe in miracles when it comes to the human mind. Instead of insisting on our superiority in every regard, let’s take pride in the connections.

There is nothing wrong with the recognition that we are apes — smart ones perhaps, but apes nonetheless. As an ape lover, I can’t see this comparison as insulting. We are endowed with the mental powers and imagination to get under the skin of other species. The more we succeed, the more we will realize that we are not the only intelligent life on earth.

Frans de Waal, a primatologist and professor of psychology at Emory University, is the author, most recently, of “Are We Smart Enough to Know How Smart Animals Are?” from which this essay is adapted.

A version of this op-ed appears in print on April 10, 2016, on page SR1 of the New York edition with the headline: What I Learned Tickling Apes. 

Todo inocente é um fdp? (El País)

Como se mover num mundo em que se tornou impossível não enxergar o mal que se pratica


29 FEV 2016 – 14:44 BRT

O golfinho que pode ter morrido por desidratação tirando selfie com turistas na Argentina.

O golfinho que pode ter morrido por desidratação tirando selfie com turistas na Argentina.

Lembro uma cena do primeiro filme da trilogia Matrix, ícone do final do século 20. Os membros da resistência eram aqueles que, em algum momento, enxergaram que a vida cotidiana era só uma trama, um programa de computador, uma ilusão. A realidade era um deserto em que os rebeldes lutavam contra “as máquinas” num mundo sem beleza ou gosto. Fazia-se ali uma escolha: tomar a pílula azul ou a vermelha. Quem escolhesse a vermelha, deixaria de acreditar no mundo como nos é dado para ver e passaria a ser confrontado com a verdade da condição humana.

Na cena que aqui me interessa recordar, um traidor da resistência negocia os termos de sua rendição enquanto se delicia com um suculento filé. Ele sabe que o filé não existe de fato, que é um programa de computador que o faz ver, sentir o cheiro e o gosto da carne, mas se esbalda. Entregaria sua alma às máquinas em troca de voltar na melhor posição – rico e famoso – ao mundo das ilusões. Delataria os companheiros se a ele fosse devolvida a inocência sobre a realidade do real. Sacrifica a luta, os amigos e a ética em troca de um desejo: voltar a ser cego. Ou voltar a acreditar no filé.

A frase exata, pronunciada enquanto olha para um naco da carne espetada no garfo, é: “Eu sei que esse filé não existe. Sei que, quando o coloco na boca, a Matrix diz ao meu cérebro que ele é suculento e delicioso”. Faz uma pausa: “Depois de nove anos, sabe o que percebi? A ignorância é maravilhosa”.

Naquela época, véspera da virada do milênio, o filme deu ao público uma porta para o debate filosófico sobre o real. Tomar a pílula vermelha logo tornou-se uma metáfora para quem escolhe enxergar a Matrix – ou enxergar para além das aparências. Desde então, nestes últimos anos de corrosão acelerada das ilusões, penso que a escolha se tornou bem mais complicada.

A ilusão, que desempenhou um papel estrutural na constituição subjetiva da nossa espécie, pode já não estar ao nosso alcance

Talvez o mal-estar do nosso tempo seja o de que já não é possível escolher entre a pílula azul e a vermelha – ou entre continuar cego ou começar a enxergar o que está por trás da trama dos dias. O mal-estar se deve ao fato de que talvez já não exista a pílula azul – ou já não seja mais possível a ilusão, esta que desempenhou um papel estrutural na constituição subjetiva da nossa espécie ao longo dos milênios.

Se fosse um de nós o membro da resistência disposto a trair os companheiros, a negociar a rendição com as máquinas diante de um suculento filé num restaurante, aqui, agora, e não mais no final dos anos 90, o dilema poderia sofrer um deslocamento. O drama não seria enxergar o filé como filé, no sentido de poder acreditar que ele existe, assim como acreditar que o restaurante existe e que o cenário a que chamamos de mundo existe tal qual está diante dos nossos olhos.

Não. O dilema atual pode ser também este, mas só na medida em que também é outro. O drama é que acreditamos no filé, sabemos que ele existe e sabemos que é gostoso. Desejamos o filé, nos lambuzamos dele e temos prazer com ele. Ao olhar para ele, porém, não enxergamos apenas “o deserto do real”, mas algo muito mais encarnado e cada vez mais inescapável: enxergamos o boi.

É terrível enxergar o boi. E, como os mais sensíveis já descobriram, é impossível deixar de enxergá-lo. Nossa superpopulação de humanos extrapolou a lógica dos vivos, matar para comer. E impôs a escravização e a tortura cotidiana de outras espécies. Milhões de bois, galinhas e porcos nascem apenas para nos alimentar em campos de concentração aos quais damos nomes mais palatáveis. São sacrificados em holocaustos diários sem que nem mesmo tenham tido uma vida.

Animais confinados, presos, às vezes sem sequer poder se mover por uma existência inteira. Criamos profissões capazes de reconhecer em segundos se um pinto é macho ou fêmea para separar as fêmeas que viverão espremidas, muitas vezes sem conseguir sequer abrir as asas, botando ovos e depois virando bandejas no supermercado e jogar os machos para serem moídos ainda vivos no triturador de lixo. Escravidão e tortura/sacrifício e lixo, estes são os destinos que determinamos aos frangos.

Somos os nazistas das outras espécies – e produzimos holocaustos cotidianos

Somos os nazistas das outras espécies. E, se antes era possível ignorar, desqualificando a questão como algo menor ou coisa de “adoradores de alface”, a internet e a disseminação de informações tornaram impossível não enxergar o olho do boi. Ao olhar para o filé, o olho do boi nos olha de volta. O olho vidrado de quem está aterrorizado porque pressente que caminha no corredor da morte, o boi que se caga de medo enquanto é obrigado a dar o passo para o sacrifício, o boi que tenta escapar, mas não encontra saída. O olho do boi alcança até gente como eu, que pode ser colocada na categoria “adoradores de churrasco”.

A publicidade do século 20 perdeu a ressonância em tempos de internet. Porque a ilusão já não é possível. Nada era mais puro do que o leite branco tirado de uma vaquinha no pasto. Era fácil acreditar na imagem bucólica do alimento saudável. Nosso leite vinha do paraíso, de nosso passado rural perdido, da vida nos bosques de Walden. Assim como a longa série de produtos dele originados, como queijo, iogurte e manteiga.

Mas a vaca da imagem não existe. A real é a vaca que nasce em cativeiro, filha de outra escrava. A vaca que quase não se move, cuja existência consiste numa longa série de estupros por instrumentos que se enfiam pelo seu corpo para fecundá-la com o sêmen de outro escravo. Então ela engravida e engravida e engravida de bezerros que dela serão sequestrados para virar filés, para que suas tetas sigam dando leite delas tirados por outras máquinas. E, como sabemos disso, o leite que chega à nossa mesa já não pode mais ser branco, mas vermelho do horror da vaca cujo corpo virou um objeto, a vaca para quem cada dia é tortura, estupro e escravidão.

Para não beber sangue procuramos nas prateleiras leites à base de vegetais. Vegetais não gritam. Soja, apenas um dos tantos exemplos. Bifes de soja, hambúrgueres de soja, linguiças de soja, leite de soja. Mas como ignorar o desmatamento, a destruição de ecossistemas inteiros e com eles toda a vida que lá havia? Como ignorar que a soja pode ter sido plantada em terra indígena e que, enquanto ela vira mercadoria no supermercado, jovens Guarani Kaiowá se enforcam porque já não sabem como viver? Já não é possível fingir que não enxergamos isso. Assim, nem os veganos mais radicais podem se salvar do pecado original.

Os mais sensíveis sentem a textura de suas roupas e sabem que são costuradas com carne humana

Olhamos para nossas roupas e horrorizados sabemos que em algum lugar da linha globalizada de produção há nelas o sangue de crianças, homens e mulheres em regime de trabalho análogo à escravidão. Como o casal que morreu abraçado na fábrica de Bangladesh, gerando a fotografia que comoveu o mundo mas não eliminou o horror que seguiu em escala industrial. Ou mesmo de um imigrante boliviano enfiado num quarto insalubre trabalhando horas e horas por quase nada bem aqui ao lado. Mas os mais sensíveis sentem a textura de suas roupas e sabem que são costuradas com carne humana. E já não sabem como vesti-las. Nem sabem como dar brinquedos para seus filhos porque sabem que os bonecos, os carrinhos, os castelos e os dinossauros contêm neles o sangue das crianças sem infância, ou o de suas mães e pais.

Já não é possível levar crianças a zoológicos ou aquários porque sabemos que a única educação próxima da verdade que receberiam ali é a do horror a que os animais são submetidos para serem exibidos, por melhor que seja a imitação de seu habitat. Lembro uma reportagem que fui fazer num zoológico, planejada para ser divertida, e só pude contar, entre outros horrores, que o babuíno chamado Beto era mantido à custa de Valium, para evitar que arrancasse pedaços do próprio corpo. Mesmo dopado jogava-se contra as grades, atirava fezes nos visitantes e espancava a companheira. Pinky, a elefanta, vivia só. Seus dois companheiros tinham morrido ao cair no fosso tentando escapar do cativeiro. Sabemos hoje que os golfinhos e as baleias dos shows acrobáticos são escravos brutalizados para servir de entretenimento a humanos. E, desde que sabemos, aqueles que gozam com esses espetáculos de morte podem se descobrir não mais como famílias felizes num momento de lazer, como nas imagens dos folhetos publicitários, mas como hordas de sádicos.

No simples ato de acender a luz já existe a consciência de que estamos destruindo o mundo de alguém e de que nada mais será simples. Neste momento, para ficar apenas num exemplo, dezenas de milhares já perderam suas casas no rio Xingu, na Amazônia, para a operação da Hidrelétrica de Belo Monte. Povos indígenas que vivem na região atingida já não conseguem suportar o aumento exponencial de mosquitos desde que o lago da usina começou a encher, alterando o ecossistema e dizimando culturas, no que já foi denunciado pelo Ministério Público Federal como etnocídio. Os impactos mal começaram e, em menos de três meses, mais de 16 toneladas de peixes morreram. E talvez também esteja chegando ao fim o tempo em que ainda é aceitável contar vidas por toneladas, mesmo que seja a vida de peixes. Ou a morte de peixes. Um dedo no interruptor e uma cadeia de mortes. E agora também já sabemos disso.

Ao pedir um café e um pão com manteiga na padaria, nos implicamos numa cadeia de horrores

O tempo das ilusões acabou. Nenhum ato do nosso cotidiano é inocente. Ao pedir um café e um pão com manteiga na padaria, nos implicamos numa cadeia de horrores causados a animais e a humanos envolvidos na produção. Cada ato banal implica uma escolha ética – e também uma escolha política.

A descrição das atrocidades que cometemos rotineiramente pode aqui seguir por milhares de caracteres. Comemos, vestimos, nos entretemos, transportamos e nos transportamos à custa da escravidão, da tortura e do sacrifício de outras espécies e também dos mais frágeis da nossa própria espécie. Somos o que de pior aconteceu ao planeta e a todos que o habitam. A mudança climática já anuncia que não apenas tememos a catástrofe, mas nos tornamos a catástrofe. Desta vez, não só para todos os outros, mas também para nós mesmos.

Já não é possível a pílula azul – ou já não é possível à adesão às ilusões. Há várias implicações profundas numa época em que o conhecimento não liberta, mas condena. A começar, talvez, pela pergunta: quem é o inocente num mundo em que a inocência já não é possível? Seria o inocente o pior humano de todos? Seria o inocente um psicopata?

O que seremos nós, subjetivamente, agora que estamos condenados a enxergar? As redes sociais têm nos dado algumas pistas. O que a internet fez foi arrancar da humanidade as ilusões sobre si mesma. O cotidiano nas redes sociais nos mostrou a verdade que sempre esteve lá, mas era protegida – ou mediada – pelo mundo das aparências. Sobre isso já escrevi um artigo, chamado A boçalidade do mal, que pode ser lido aqui. As implicações de perder este véu tão arduamente tecido são profundas e recém começam a ser investigadas. O impacto sobre a subjetividade estrutural de nossa espécie é tremendo, exatamente porque é estrutural e desabou num espaço de tempo muito curto, quase num soluço.

Já não é mais possível pensar apenas em humanos quando se aborda o tema dos direitos

O que faremos diante da impossibilidade da pílula azul, a que garantia as ilusões? A ridicularização daqueles que levantam esse tema ainda é um caminho, mas convencem menos que no passado. Também a piada se torna anacrônica. As interrogações vêm mudando, e já não é possível afirmar, sem revelar considerável ignorância, inclusive sobre a ciência produzida, que os animais não têm vida mental nem emocional, são “irracionais”. Ou, lembrando um argumento religioso, “que não têm alma”. Toda a ideologia que um dia justificou a escravidão de humanos, até que foi questionada, derrubada e transformada numa mancha de crime e vergonha na história da humanidade, passou a ser confrontada também com relação aos animais.

Cada vez mais as outras espécies começam a ser vistas como diferentes – e não mais como inferiores. Assim, o que se coloca no campo da ética são questões fascinantes e muito mais espinhosas. Mesmo o termo “direitos humanos” passa a ser questionável, porque pensar apenas em “humanos” já não é mais possível. No momento em que nos tornamos a própria definição de catástrofe, o conceito de “espécie”, em sua expressão cultural, se desloca. Outras formas de compreender e nomear o lugar dos humanos ganham espaço no horizonte filosófico e no exercício da política.

Resta o cinismo, sempre o último reduto. Dizer que, diante de mais de 7 bilhões de seres humanos ocupando o planeta e crescendo, não há outra maneira a não ser comer e vestir exploração, escravidão e tortura é a afirmação mais óbvia. É a afirmação expandida usada para todas as desigualdades de direitos. Desde que não seja eu – ou os meus – os sacrificados, tudo bem.

Vale a pena dedicar um parágrafo aos cínicos, essa categoria que prolifera com o ímpeto de um Aedes aegypti no Brasil e no mundo. O cínico é aquele que olha com calculado enfado para todos os outros, porque ele acredita que entende o mundo como ele de fato é. Ele é o que sabe das coisas, o único esperto. Todos os outros são tolinhos com ideias irreais. O cínico é aquele que deixa o mundo como está. Mas talvez, neste momento, o cínico seja justamente o inocente. Sua inocência consiste em acreditar que a pílula azul ainda está disponível.

Como ser ético num mundo sem ilusões, em que cada ato implica na tortura e no sacrifício de um outro?

Há um preço para enxergar e, mesmo assim, assumir o extermínio cotidiano como dado, como parte intrínseca da condição de ser um humano. Nem toda a crescente gourmetização da comida, nem todas as narrativas ficcionais que contam uma história idílica sobre a origem daquele produto, nada ocultará esse preço. E nada reduzirá seu impacto subjetivo. Não é fácil viver na pele do algoz. Não é simples viver sabendo-se. Aquele que se olha no espelho e se enxerga carregará essa autoimagem consigo. E se tornará algo que já não é mais o mesmo.

Há uma imagem recente que pode dar algumas pistas sobre esse caminho. Numa praia da Argentina, um golfinho foi carregado por turistas. Alguns dizem que ainda estava vivo, outros que já estava morto. Vivo ou morto, os turistas preocuparam-se apenas com tirar selfies para postar nas redes sociais. O site de humor Sensacionalista postou: “Golfinho morre ao ser retirado do mar para turistas fazerem selfie e Deus anuncia recall do ser humano”.

Ainda assim, quem se horrorizou com a falta de horror alheia, à noite seguiu diante do olho do boi. O que fazer diante do olho do boi? Como ser ético num mundo sem ilusões, em que cada ato implica na tortura e no sacrifício de um outro, humano e não humano? Se somos os nazistas das outras espécies, quando não da mesma, aceitar que assim é não seria se tornar um Eichmann, o nazista julgado em Jerusalém que alegou apenas cumprir ordens, o homem tão banalmente ordinário que inspirou a filósofa Hannah Arendt a criar o conceito da “banalidade do mal”? Não seríamos, aos olhos do boi, todos Eichmann, justificando-nos pelo senso comum de que assim é e se faz o que é preciso para sobreviver? Se sim, o que implica viver assumidamente nesta pele?

Talvez estejamos, como espécie que se pensa, diante de um dos maiores dilemas éticos da nossa história. Sem poder optar pela pílula azul, a das ilusões, condenados à pílula vermelha, a que nos obriga a enxergar, como construir uma escolha que volte a incluir a ética? Como não paralisar diante do espelho, reduzidos ou ao horror ou ao cinismo, eliminando a possibilidade de transformação? Como nos mover?

Diante do filé que desejamos e do olho boi que nos interroga, há pelo menos uma hipótese cada vez mais forte: o inocente é um assassino.

Empathy more common in animals than thought (Science Daily)

Date: January 21, 2016

Source: American Association for the Advancement of Science

Summary: A new study reveals that prairie voles console loved ones who are feeling stressed — and it appears that the infamous ‘love hormone,’ oxytocin, is the underlying mechanism.

Prairie voles consoling. This material relates to a paper that appeared in the Jan. 22, 2016 issue of Science, published by AAAS. The paper, by James Burkett at Emory University in Atlanta, GA, and colleagues was titled, “Oxytocin-dependent consolation behavior in rodents.” Credit: Zack Johnson

A new study reveals that prairie voles console loved ones who are feeling stressed — and it appears that the infamous “love hormone,” oxytocin, is the underlying mechanism. Until now, consolation behavior has only been documented in a few nonhuman species with high levels of sociality and cognition, such as elephants, dolphins and dogs.

Prairie voles are particularly social rodents, causing them to be the focus of many studies. This led James Burkett and colleagues to explore their potential for empathy-motivated behaviors.

The researchers created an experiment where relatives and known individuals were temporarily isolated from each other, while one was exposed to mild shocks. Upon reunion, the non-stressed prairie voles proceeded to lick the stressed voles sooner and for longer durations, compared to a control scenario where individuals were separated but neither was exposed to a stressor.

Measurements of hormone levels revealed that the family members and friends were distressed when they could not comfort their loved one.

The fact that consoling behavior occurred only between those who were familiar with each other — including non-kin members — but not strangers, demonstrates that the behavior is not simply a reaction to aversive cues, the authors note.

Since the oxytocin receptor is associated with empathy in humans, Burkett et al. blocked this neurotransmitter in prairie voles in a series of similar consolation experiments. Blocking oxytocin did not cause family members and friends to alter their self-grooming behavior, yet they did cease consoling each other.

These findings provide new insights into the mechanisms of empathy and the evolution of complex empathy-motivated behaviors.

Journal Reference:

  1. J. P. Burkett, E. Andari, Z. V. Johnson, D. C. Curry, F. B. M. de Waal, L. J. Young. Oxytocin-dependent consolation behavior in rodentsScience, 2016; 351 (6271): 375 DOI: 10.1126/science.aac4785

The Big Search to Find Out Where Dogs Come From (New York Times)

An ancient canine skull at the Royal Belgian Institute of Natural Sciences. Scientists are still debating exactly when and where the ancient human-canine bond originated. ANDREW TESTA FOR THE NEW YORK TIMES


OXFORD, England — Before humans milked cows, herded goats or raised hogs, before they invented agriculture, or written language, before they had permanent homes, and most certainly before they had cats, they had dogs.

Or dogs had them, depending on how you view the human-canine arrangement. But scientists are still debating exactly when and where the ancient bond originated. And a large new study being run out of the University of Oxford here, with collaborators around the world, may soon provide some answers.

Scientists have come up with a broad picture of the origins of dogs. First off, researchers agree that they evolved from ancient wolves. Scientists once thought that some visionary hunter-gatherer nabbed a wolf puppy from its den one day and started raising tamer and tamer wolves, taking the first steps on the long road to leashes and flea collars. This is oversimplified, of course, but the essence of the idea is that people actively bred wolves to become dogs just the way they now breed dogs to be tiny or large, or to herd sheep.

The prevailing scientific opinion now, however, is that this origin story does not pass muster. Wolves are hard to tame, even as puppies, and many researchers find it much more plausible that dogs, in effect, invented themselves.

Arden Hulme-Beaman cutting a piece from an ancient skull for DNA testing at the Royal Belgian Institute of Natural Sciences in Brussels. ANDREW TESTA FOR THE NEW YORK TIMES

One reason for the conflicting theories, according to Greger Larson, a biologist in the archaeology department at the University of Oxford, is that dog genetics are a mess. In an interview at his office here in November, he noted that most dog breeds were invented in the 19th century during a period of dog obsession that he called “the giant whirlwind blender of the European crazy Victorian dog-breeding frenzy.”

That blender, as well as random breeding by dogs themselves, and interbreeding with wolves at different times over at least the last 15,000 years, created a “tomato soup” of dog genetics, for which the ingredients are very hard to identify, Dr. Larson said.

The way to find the recipe, Dr. Larson is convinced, is to create a large database of ancient DNA to add to the soup of modern canine genetics. And with a colleague, Keith Dobney at the University of Aberdeen, he has persuaded the Who’s Who of dog researchers to join a broad project, with about $2.5 million in funding from the Natural Environment Research Council in England and the European Research Council, to analyze ancient bones and their DNA.

Robert Wayne, an evolutionary biologist at U.C.L.A. who studies the origin of dogs and is part of the research, said, “There’s hardly a person working in canine genetics that’s not working on that project.”

A wolf on display at the Oxford Museum of Natural History. ANDREW TESTA FOR THE NEW YORK TIMES

That is something of a triumph, given the many competing theories in this field. “Almost every group has a different origination hypothesis,” he said.

But Dr. Larson has sold them all on the simple notion that the more data they have, the more cooperative the effort is, the better the answers are going to be. His personality has been crucial to promoting the team effort, said Dr. Wayne, who described Dr. Larson as “very outgoing, gregarious.” Also, Dr. Wayne added, “He has managed not to alienate anyone.”

Scientists at museums and universities who are part of the project are opening up their collections. So to gather data, Dr. Larson and his team at Oxford have traveled the world, collecting tiny samples of bone and measurements of teeth, jaws and occasionally nearly complete skulls from old and recent dogs, wolves and canids that could fall into either category. The collection phase is almost done, said Dr. Larson, who expects to end up with DNA from about 1,500 samples, and photographs and detailed measurements of several thousand.

Scientific papers will start to emerge this year from the work, some originating in Oxford, and some from other institutions, all the work of many collaborators.

Dr. Larson is gambling that the project will be able to determine whether the domestication process occurred closer to 15,000 or 30,000 years ago, and in what region it took place. That’s not quite the date, GPS location and name of the ancient hunter that some dog lovers might hope for.

But it would be a major achievement in the world of canine science, and a landmark in the analysis of ancient DNA to show evolution, migrations and descent, much as studies of ancient hominid DNA have shown how ancient humans populated the globe and interbred with Neanderthals.

And why care about the domestication of dogs, beyond the obsessive interest so many people have in their pets? The emergence of dogs may have been a watershed.

“Maybe dog domestication on some level kicks off this whole change in the way that humans are involved and responding to and interacting with their environment,” he added. “I don’t think that’s outlandish.”

Shepherding the Research

Dr. Larson is no stranger to widely varying points of view. He is an American, but recently became a British citizen as well. His parents are American and he visited the United States often as a child, but he was born in Bahrain and grew up in Turkey and Japan, places where his parents were teaching in schools on American military bases.

He graduated from Claremont McKenna College in California and received his Ph.D. at Oxford. In between college and graduate studies, he spent a year searching for the bed of an ancient river in Turkmenistan, and another couple of years setting up an environmental consulting office in Azerbaijan. He had an interest in science as an undergraduate, and some background from a college major in environment, economics and politics, but no set career plans. Instead, his career grew out of intense curiosity, a knack for making friends and a willingness to jump at an opportunity, like the time he managed to tag along on an archaeological dig.

He was staying in Ashgabat, Turkmenistan, and a local man who had helped him rent an old Soviet truck to explore the desert told him some Westerners were arriving to go on a dig, so he wangled his way onto one of the trucks.

“I think everybody there thought I was with somebody else,” Dr. Larson said.

By the time the group stopped to rest and someone asked him who he was, it was too late to question whether he really belonged. “I was a complete stowaway,” he said.

But he could move dirt and speak Russian, and he had some recently acquired expertise — in college drinking games — that he said was in great demand at night. By luck, he said, the researchers on the dig turned out to be “the great and the good of British neolithic archaeology.” One of them was Chris Gosden, the chairman of European Archaeology at Oxford, who later invited him to do a one-year master’s degree in archaeology at Oxford. That eventually led to a Ph.D. program after he spent some time in graduate school in the United States.

The current project began when he became fed up with the lack of ancient DNA evidence in papers about the origin of dogs. He called Dr. Dobney, of the University of Aberdeen in 2011, and said, “We’re doing dogs.”

After receiving the grant from the council in England, he and Dr. Dobney organized a conference in Aberdeen, Scotland, to gather as many people involved in researching dog origins as they could. His pitch to the group was that despite their different points of view, everyone was interested in the best possible evidence, no matter where it led.

“If we have to eat crow, we eat crow,” he said. “It’s science.”

A 32,000-Year-Old Skull

Mietje Germonpré, a paleontologist at the Royal Belgian Institute of Natural Sciences, is one of the many scientists participating in the dog project. She was one of a number of authors on a 2013 paper in Science that identified a skull about 32,000 years old from a Belgian cave in Goyet as an early dog. Dr. Wayne at U.C.L.A. was the senior author on the paper and Olaf Thalmann from the University of Turku in Finland was the first author.

It is typical of Dr. Larson’s dog project that although he disagreed with the findings of the paper, arguing that the evidence just wasn’t there to call the Goyet skull a dog, all of the authors of the paper are working on the larger project with him.

In November in Brussels, holding the priceless fossil, Dr. Germonpré pointed out the wide skull, crowded teeth and short snout of the ancient skull — all indicators to her that it was not a wolf.

“To me, it’s a dog,” she said. Studies of mitochondrial DNA, passed down from females only, also indicated the skull was not a wolf, according to the 2013 paper.

Dr. Germonpré said she thinks dogs were domesticated some time before this animal died, and she leans toward the idea that humans intentionally bred them from wolves.

She holds up another piece of evidence, a reconstruction of a 30,000-year-old canid skull found near Predmostí, in the Czech Republic, with a bone in its mouth. She reported in 2014 that this was a dog. And she says the bone is part of evidence the animal was buried with care. “We think it was deliberately put there,” she said.

But she recognizes these claims are controversial and is willing, like the rest of the world of canine science, to risk damage to the fossils themselves to get more information on not just the mitochondrial DNA but also the nuclear DNA.

To minimize that risk, she talked with Ardern Hulme-Beaman, a postdoctoral researcher with the Oxford team, about where to cut into it. He was nearing the end of months of traveling to Russia, Turkey, the United States and all over Europe to take samples of canid jaws and skulls.

He and Allowyn Evin, now with the National Center for Scientific Research in Montpelier, France, also took many photographs of each jaw and skull to do geometric morphometrics. Software processes detailed photographs from every angle into 3-D recreations that provide much more information on the shape of a bone than length and width measurements.

Dr. Germonpré and Dr. Hulme-Beaman agreed on a spot in the interior of the skull to cut. In the laboratory, he used a small electric drill with a cutting blade to remove a chunk the size of a bit of chopped walnut. An acrid, burning smell indicated that organic material was intact within the bone — a good sign for the potential retrieval of DNA.

Back in Oxford, researchers will attempt to use the most current techniques to get as much DNA as possible out of the sample. There is no stretch of code that says “wolf” or “dog,” any more than there is a single skull feature that defines a category. What geneticists try to establish is how different the DNA of one animal is from another. Adding ancient DNA gives many more points of reference over a long time span.

Dr. Larson hopes that he and his collaborators will be able to identify a section of DNA in some ancient wolves that was passed on to more doglike descendants and eventually to modern dogs. And he hopes they will be able to identify changes in the skulls or jaws of those wolves that show shifts to more doglike shapes, helping to narrow the origins of domestication.

The usual assumption about domestic animals is that the process of taming and breeding them happened once. But that’s not necessarily so. Dr. Larson and Dr. Dobney showed that pigs were domesticated twice, once in Anatolia and once in China. The same could be true of dogs.

Only the Beginning

Although the gathering of old bones is almost done, Dr. Larson is still negotiating with Chinese researchers for samples from that part of the world, which he says are necessary. But he hopes they will come.

If all goes well, said Dr. Larson, the project will publish a flagship paper from all of the participants describing their general findings. And over the next couple of years, researchers, all using the common data, will continue to publish separate findings.

Other large collaborative efforts are brewing, as well. Dr. Wayne, at U.C.L.A., said that a group in China was forming with the goal of sequencing 10,000 dog genomes. He and Dr. Larson are part of that group.

Last fall, Dr. Larson was becoming more excited with each new bit of data, but not yet ready to tip his hand about what conclusions the data may warrant, or how significant they will be.

But he is growing increasingly confident that they will find what they want, and come close to settling the thorny question of when and where the tearing power of a wolf jaw first gave way to the persuasive force of a nudge from a dog’s cold nose.

“I’m starting to drink my own Kool-Aid,” he said.

Army ants’ ‘living’ bridges span collective intelligence, ‘swarm’ robotics (Science Daily)

Date: November 24, 2015

Source: Princeton University

Summary: Researchers report for the first time that the ‘living’ bridges army ants of the species Eciton hamatum build with their bodies are more sophisticated than scientists knew. The ants automatically assemble with a level of collective intelligence that could provide new insights into animal behavior and even help in the development of intuitive robots that can cooperate as a group.

Researchers from Princeton University and the New Jersey Institute of Technology report for the first time that the “living” bridges army ants of the species Eciton hamatum (pictured) build with their bodies are more sophisticated than scientists knew. The ants automatically assemble with a level of collective intelligence that could provide new insights into animal behavior and even help in the development of intuitive robots that can cooperate as a group. Credit: Courtesy of Matthew Lutz, Princeton University, and Chris Reid, University of Sydney

 Columns of workers penetrate the forest, furiously gathering as much food and supplies as they can. They are a massive army that living things know to avoid, and that few natural obstacles can waylay. So determined are these legions that should a chasm or gap disrupt the most direct path to their spoils they simply build a new path — out of themselves.

Without any orders or direction, individuals from the rank and file instinctively stretch across the opening, clinging to one another as their comrades-in-arms swarm across their bodies. But this is no force of superhumans. They are army ants of the species Eciton hamatum, which form “living” bridges across breaks and gaps in the forest floor that allow their famously large raiding swarms to travel efficiently.

Researchers from Princeton University and the New Jersey Institute of Technology (NJIT) report for the first time that these structures are more sophisticated than scientists knew. The ants exhibit a level of collective intelligence that could provide new insights into animal behavior and even help in the development of intuitive robots that can cooperate as a group, the researchers said.

Ants of E. hamatum automatically form living bridges without any oversight from a “lead” ant, the researchers report in the journal Proceedings of the National Academy of the Sciences. The action of each individual coalesces into a group unit that can adapt to the terrain and also operates by a clear cost-benefit ratio. The ants will create a path over an open space up to the point when too many workers are being diverted from collecting food and prey.

“These ants are performing a collective computation. At the level of the entire colony, they’re saying they can afford this many ants locked up in this bridge, but no more than that,” said co-first author Matthew Lutz, a graduate student in Princeton’s Department of Ecology and Evolutionary Biology.

“There’s no single ant overseeing the decision, they’re making that calculation as a colony,” Lutz said. “Thinking about this cost-benefit framework might be a new insight that can be applied to other animal structures that people haven’t thought of before.”

The research could help explain how large groups of animals balance cost and benefit, about which little is known, said co-author Iain Couzin, a Princeton visiting senior research scholar in ecology and evolutionary biology, and director of the Max Planck Institute for Ornithology and chair of biodiversity and collective behavior at the University of Konstanz in Germany.

Previous studies have shown that single creatures use “rules of thumb” to weigh cost-and-benefit, said Couzin, who also is Lutz’s graduate adviser. This new work shows that in large groups these same individual guidelines can eventually coordinate group-wide, he said — the ants acted as a unit although each ant only knew its immediate circumstances.

“They don’t know how many other ants are in the bridge, or what the overall traffic situation is. They only know about their local connections to others, and the sense of ants moving over their bodies,” Couzin said. “Yet, they have evolved simple rules that allow them to keep reconfiguring until, collectively, they have made a structure of an appropriate size for the prevailing conditions.

“Finding out how sightless ants can achieve such feats certainly could change the way we think of self-configuring structures in nature — and those made by man,” he said.

Ant-colony behavior has been the basis of algorithms related to telecommunications and vehicle routing, among other areas, explained co-first author Chris Reid, a postdoctoral research associate at the University of Sydney who conducted the work while at NJIT. Ants exemplify “swarm intelligence,” in which individual-level interactions produce coordinated group behavior. E. hamatum crossings assemble when the ants detect congestion along their raiding trail, and disassemble when normal traffic has resumed.

Previously, scientists thought that ant bridges were static structures — their appearance over large gaps that ants clearly could not cross in midair was somewhat of a mystery, Reid said. The researchers found, however, that the ants, when confronted with an open space, start from the narrowest point of the expanse and work toward the widest point, expanding the bridge as they go to shorten the distance their compatriots must travel to get around the expanse.

“The amazing thing is that a very elegant solution to a colony-level problem arises from the individual interactions of a swarm of simple worker ants, each with only local information,” Reid said. “By extracting the rules used by individual ants about whether to initiate, join or leave a living structure, we could program swarms of simple robots to build bridges and other structures by connecting to each other.

“These robot bridges would exhibit the beneficial properties we observe in the ant bridges, such as adaptability to local conditions, real-time optimization of shape and position, and rapid construction and deconstruction without the need for external building materials,” Reid continued. “Such a swarm of robots would be especially useful in dangerous and unpredictable conditions, such as natural disaster zones.”

Radhika Nagpal, a professor of computer science at Harvard University who studies robotics and self-organizing biological systems, said that the findings reveal that there is “something much more fundamental about how complex structures are assembled and adapted in nature, and that it is not through a supervisor or planner making decisions.”

Individual ants adjusted to one another’s choices to create a successful structure, despite the fact that each ant didn’t necessarily know everything about the size of the gap or the traffic flow, said Nagpal, who is familiar with the research but was not involved in it.

“The goal wasn’t known ahead of time, but ‘emerged’ as the collective continually adapted its solution to the environmental factors,” she said. “The study really opens your eyes to new ways of thinking about collective power, and has tremendous potential as a way to think about engineering systems that are more adaptive and able to solve complex cost-benefit ratios at the network level just through peer-to-peer interactions.”

She compared the ant bridges to human-made bridges that automatically widened to accommodate heavy vehicle traffic or a growing population. While self-assembling road bridges may be a ways off, the example illustrates the potential that technologies built with the same self-assembling capabilities seen in E. hamatum could have.

“There’s a deep interest in creating robots that don’t just rely on themselves, but can exploit the group to do more — and self-assembly is the ultimate in doing more,” Nagpal said. “If you could have small simple robots that were able to navigate complex spaces, but could self-assemble into larger structures — bridges, towers, pulling chains, rafts — when they face something they individually did not have the ability to do, that’s a huge increase in power in what robots would be capable of.”

The spaces E. hamatum bridges are not dramatic by human standards — small rifts in the leaf cover, or between the ends of two sticks. Bridges will be the length of 10 to 20 ants, which is only a few centimeters, Lutz said. That said, E. hamatum swarms form several bridges during the course of a day, which can see the back-and-forth of thousands of ants.

“The bridges are something that happen numerous times every day. They’re creating bridges to optimize their traffic flow and maximize their time,” Lutz said.

“When you’re moving hundreds of thousands of ants, creating a little shortcut can save a lot of energy,” he said. “This is such a unique behavior. You have other types of ants forming structures out of their bodies, but it’s not such a huge part of their lives and daily behavior.”

The research also included Scott Powell, an army-ant expert and assistant professor of biology at George Washington University; Albert Kao, a postdoctoral fellow at Harvard who received his doctorate in ecology and evolutionary biology from Princeton in 2015; and Simon Garnier, an assistant professor of biological sciences at NJIT who studies swarm intelligence and was once a postdoctoral researcher in Couzin’s lab at Princeton.

To conduct their field experiments, Lutz and Reid constructed a 1.5-foot-tall apparatus with ramps on both sides and adjustable arms in the center with which they could adjust the size of the gap. They then inserted the apparatus into active E. hamatum raiding trails that they found in the forests of Barro Colorado Island, Panama. Because ants follow one another’s chemical scent, Lutz and Reid used sticks and leaves from the ants’ trail to get them to reform their column across the device.

Lutz and Reid observed how the ants formed bridges across gaps that were set at angles of 12, 20, 40 and 60 degrees. They gauged how much travel-distance the ants saved with their bridge versus the surface area (in centimeters squared) of the bridge itself. Twelve-degree angles shaved off the most distance (around 11 centimeters) while taking up the fewest workers. Sixty-degree angles had the highest cost-to-benefit ratio. Interestingly, the ants were willing to expend members for 20-degree angles, forming bridges up to 8 centimeters squared to decrease their travel time by almost 12 centimeters, indicating that the loss in manpower was worth the distance saved.

Lutz said that future research based on this work might compare these findings to the living bridges of another army ant species, E. burchellii, to determine if the same principles are in action.

The paper, “Army ants dynamically adjust living bridges in response to a cost-benefit trade-off,” was published Nov. 23 by Proceedings of the National Academy of Sciences. The work was supported by the National Science Foundation (grant nos. PHY-0848755, IOS0-1355061 and EAGER IOS-1251585); the Army Research Office (grant nos. W911NG-11-1-0385 and W911NF-14-1-0431); and the Human Frontier Science Program (grant no. RGP0065/2012).

Journal Reference:

  1. Chris R. Reid, Matthew J. Lutz, Scott Powell, Albert B. Kao, Iain D. Couzin, Simon Garnier. Army ants dynamically adjust living bridges in response to a cost–benefit trade-offProceedings of the National Academy of Sciences, 2015; 201512241 DOI: 10.1073/pnas.1512241112

Wimps or warriors? Honey bee larvae absorb the social culture of the hive, study finds (Science Daily)

October 29, 2015
University of Illinois at Urbana-Champaign
Even as larvae, honey bees are tuned in to the social culture of the hive, becoming more or less aggressive depending on who raises them, researchers report.

Even as larvae, honey bees are tuned in to the social culture of the hive, becoming more or less aggressive depending on who raises them. The researchers don’t yet know how the social information is being transmitted to the larvae. Credit: © gertrudda / Fotolia

Even as larvae, honey bees are tuned in to the social culture of the hive, becoming more or less aggressive depending on who raises them, researchers report in the journal Scientific Reports.

“We are interested in the general issue of how social information gets under the skin, and we decided to take a chance and ask about very young bees that are weeks away from adulthood,” said University of Illinois entomology professor and Carl R. Woese Institute for Genomic Biology director Gene Robinson, who led the research with postdoctoral researcher Clare Rittschof and Pennsylvania State University professor Christina Grozinger.

“In a previous study, we cross-fostered adult bees from gentle colonies into more aggressive colonies and vice versa, and then we measured their brain gene expression,” Robinson said. “We found that the bees had a complex pattern of gene expression, partly influenced by their own personal genetic identity and partly influenced by the environment of the colony they were living in. This led us to wonder when they become so sensitive to their social environment.”

In the new study, the researchers again cross-fostered bees, but this time as larvae in order to manipulate the bees’ early life experiences. The larvae were from a variety of queens, with sister larvae divided between high- and low-aggression colonies.

The larvae were removed from their foster hives and put into a neutral laboratory environment one day before they emerged as adults. The researchers tested their aggressiveness by exposing them to an intruder bee.

They were surprised to see that the bees retained the social information they had acquired as larvae. Those raised in aggressive colonies were 10 to 15 percent more aggressive than those raised in the gentler colonies.

“Even sisters born of the same queen but reared in different colonies differed in aggression, demonstrating the potency of this environmental effect,” Robinson said.

The finding was surprising in part because bee larvae undergo metamorphosis, which radically changes the structure of their bodies and brains.

“It’s hard to imagine what elements of the brain are influenced during the larval period that then survive the massive reorganization of the brain to bias behavior in this way,” Robinson said.

The aggressive honey bees also had more robust immune responses than their gentler counterparts, the team found.

“We challenged them with pesticides and found that the aggressive bees were more resistant to pesticide,” Grozinger said. “That’s surprising considering what we know from vertebrates, where stress in early life leads to a diminishment of resilience. With the bees, we saw an increase in resilience.”

This finding also suggests that the effects of the social environment on young bees could extend beyond brain function and behavior, Robinson said.

The researchers don’t yet know how the social information is being transmitted to the larvae. They tested whether the bees differed in size, which would suggest that they had been fed differently, but found no size differences between aggressive and gentle bees.

“Adult honey bees are well known for their sociality, their communication skills and their ability to adjust their behavior in response to the needs of the hive,” Rittschof said.

“In mammals, including humans, the effects of early life social interactions often persist throughout adulthood despite additional social experiences,” she said. “A similar pattern in honey bees has broad implications for our understanding of social behavior within the hive and in comparison with other species.”


Journal Reference:

  1. Clare C. Rittschof, Chelsey B. Coombs, Maryann Frazier, Christina M. Grozinger, Gene E. Robinson. Early-life experience affects honey bee aggression and resilience to immune challengeScientific Reports, 2015; 5: 15572 DOI: 10.1038/srep15572

New evidence of cultural diversification between neighboring chimpanzee communities (University of Cambridge)



For centuries it has been thought that culture is what distinguishes humans from other animals, but over the past decade this idea has been repeatedly called into question. Cultural variation has been identified in a growing number of species in recent years, ranging from primates to cetaceans. Chimpanzees, our closest living relatives, show the most diverse cultures aside from humans, most notably, in their use of a wide variety of tools.

The method traditionally used to establish the presence of culture in wild animals compares behavioural variation across populations and excludes all behavioural patterns that can be explained by genetic or environmental differences across sites. Nevertheless, it is impossible to conclusively rule out the influence of genetics and environmental conditions in geographically distant populations.

To circumnavigate this problem, researchers, led by Dr. Kathelijne Koops, took a new approach. “We compared neighbouring chimpanzee groups living under similar environmental conditions, which allows for the investigation of fine scale cultural differences, whilst keeping genetics constant,” said Koops.

She and colleagues from Kyoto University and Freie Universität Berlin compared the length of tools used for ‘ant-dipping’ between two neighbouring chimpanzee communities, M-group and S-group, in the Kalinzu Forest, Uganda. Dipping for army ants is one of the hallmark examples of culture in chimpanzees and involves the use of a stick to extract the highly aggressive army ants from their underground nests.

Previous research has shown that ant-dipping tool length varied across chimpanzee study sites in relation to the army ant species (Dorylus spp.) that were present. So Koops compared the availability of the different species of army ants and the length of dipping tools used in the two adjacent chimpanzee communities.

The researchers found that M-group tools were significantly longer than S-group tools, despite identical army ant species availability. Considering the lack of ecological differences between the two communities, the tool length difference was concluded to be cultural. “Our findings highlight how cultural knowledge can generate small-scale cultural diversification in neighbouring groups,” said Koops.

“Given the close evolutionary relationship between chimpanzees and humans, insights into what drives cultural diversification in our closest living relatives will in turn shed light on how cultural differences emerge and are maintained between adjacent groups in human societies,” said Koops, who conducted the work at Cambridge University’s Division of Biological Anthropology and at Zurich University’s Anthropological Institute and Museum.

The research is published today in the Nature journal Scientific Reports.

Chimpanzés caçadores dão pistas sobre os primeiros humanos (El País)

Primatas que usam lanças podem fornecer indícios sobre origem das sociedades humanas

 12 MAY 2015 – 18:14 BRT

Um velho chimpanzé bebe água em um lago, em Fongoli, no Senegal. / FRANS LANTING

Na quente savana senegalesa se encontra o único grupo de chimpanzés que usa lanças para caçar animais com os quais se alimenta. Um ou outro grupo de chimpanzés foi visto portando ferramentas para a captura de pequenos mamíferos, mas esses, na comunidade de Fongoli, caçam regularmente usando ramos afiados. Esse modo de conseguir alimento é um uso cultural consolidado para esse grupo de chimpanzés.

Além dessa inovação tecnológica, em Fongoli ocorre também uma novidade social que os distingue dos demais chimpanzés estudados na África: há mais tolerância, maior paridade dos sexos na caça e os machos mais corpulentos não passam com tanta frequência por cima dos interesses dos demais, valendo-se de sua força. Para os pesquisadores que vêm observando esse comportamento há uma década esses usos poderiam, além disso, oferecer pistas sobre a evolução dos ancestrais humanos.

“São a única população não humana conhecida que caça vertebrados com ferramentas de forma sistemática, por isso constituem uma fonte importante para a hipótese sobre o comportamento dos primeiros hominídeos, com base na analogia”, explicam os pesquisadores do estudo no qual formularam suas conclusões depois de dez anos observando as caçadas de Fongoli. Esse grupo, liderado pela antropóloga Jill Pruetz, considera que esses animais são um bom exemplo do que pode ser a origem dos primeiros primatas eretos sobre duas patas.

Os machos mais fortes dessa comunidade respeitam as fêmeas na caça

Na sociedade Fongoli as fêmeas realizam exatamente a metade das caçadas com lança. Graças à inovação tecnológica que representa a conversão de galhos em pequenas lanças com as quais se ajudam para caçar galagos – pequenos macacos muito comuns nesse entorno –, as fêmeas conseguem certa independência alimentar. Na comunidade de Gombe, que durante muitos anos foi estudada por Jane Goodall, os machos arcam com cerca de 90% do total das presas; em Fongoli, somente 70%. Além disso, em outros grupos de chimpanzés os machos mais fortes roubam uma de cada quatro presas caçadas pelas fêmeas (sem ferramentas): em Fongoli, apenas 5%.

Uma fêmea de chimpanzé apanha e examina um galho que usará para capturar sua presa. / J. PRUETZ

“Em Fongoli, quando uma fêmea ou um macho de baixo escalão captura uma presa, permitem que ele fique com ela e a coma. Em outros lugares, o macho alfa ou outro macho dominante costuma tomar-lhe a presa. Assim, as fêmeas obtêm pouco benefício da caça, se outro chimpanzé lhe tira sua presa”, afirma Pruetz. Ou seja, o respeito dos machos de Fongoli pelas presas obtidas por suas companheiras serviria de incentivo para que elas se decidam a ir à caça com mais frequência do que as de outras comunidades. Durante esses anos de observação, praticamente todos os chimpanzés do grupo – cerca de 30 indivíduos – caçaram com ferramentas,

O clima seco faz com que os macacos mais acessíveis em Fongoli sejam os pequenos galagos, e não os colobos vermelhos – os preferidos dos chimpanzés em outros lugares da África –, que são maiores e difíceis de capturar por outros que não sejam os machos mais rápidos e corpulentos. Quase todos os episódios de caça com lanças observados (três centenas) se deram nos meses úmidos, nos quais outras fontes de alimento são escassas.

A savana senegalesa, com poucas árvores, é um ecossistema que tem uma importante semelhança com o cenário em que evoluíram os ancestrais humanos. Ao contrário de outras comunidades africanas, os chimpanzés de Fongoli passam a maior parte do tempo no chão, e não entre os galhos. A excepcional forma de caça de Fongoli leva os pesquisadores a sugerir em seu estudo que os primeiros hominídeos provavelmente intensificaram o uso de ferramentas tecnológicas para superar as pressões ambientais, e que eram até mesmo “suficientemente sofisticados a ponto de aperfeiçoar ferramentas de caça”.

“Sabemos que o entorno tem um impacto importante no comportamento dos chimpanzés”, afirma o primatólogo Joseph Call, do Instituto Max Planck. “A distribuição das árvores determina o tipo de caça: onde a vegetação é mais frondosa, a caçada é mais cooperativa em relação a outros entornos nos quais é mais fácil seguir a presa, e eles são mais individualistas”, assinala Call.

No entanto, Call põe em dúvida que essas práticas de Fongoli possam ser consideradas caçadas com lança propriamente ditas, já que para ele lembram mais a captura de formigas e cupins usando palitos, algo mais comum entre os primatas. “A definição de caça que os pesquisadores estabelecem em seu estudo não se distingue muito do que fazem colocando um raminho em um orifício para conseguir insetos para comer”, diz Call. Os chimpanzés de Fongoli cutucam com paus os galagos quando eles se escondem em cavidades das árvores para forçá-los a sair e, uma vez fora, lhes arrancam a cabeça com uma mordida. “É algo que fica entre uma coisa e a outra”, argumenta.

Esses antropólogos acreditam que o achado permite pensar que os primeiros hominídeos eretos também usavam lanças

Pruetz responde a esse tipo de crítica dizendo que se trata de uma estratégia para evitar que o macaco os morda ou escape, uma situação muito diferente daquela de colocar um galho em um orifício para capturar bichos. Se for o mesmo, argumentam Pruetz e seus colegas, a pergunta é “por que os chimpanzés de outros grupos não caçam mais”.

Além do caso particular, nem sequer está encerrado o debate sobre se os chimpanzés devem ser considerados modelos do que foram os ancestrais humanos. “Temos de levar em conta que o bonobo não faz nada disso e é tão próximo de nós como o chimpanzé”, defende Call. “Pegamos o chimpanzé por que nos cai bem para assinalar determinadas influências comuns. É preciso ter muito cuidado e não pesquisar a espécie dependendo do que queiramos encontrar”, propõe.

Chimps joining new troop learn its ‘words’: study (Reuters)


NEW YORK, Thu Feb 5, 2015 1:03pm EST

(Reuters) – Just as Bostonians moving to Tokyo ditch “grapefruit” and adopt “pamplemousse,” so chimps joining a new troop change their calls to match those of their new troop, scientists reported on Thursday in the journal Current Biology.

The discovery represents the first evidence that animals besides humans can replace the vocal sounds their native group uses for specific objects – in the chimps’ case, apples – with those of their new community.

One expert on chimp vocalizations, Bill Hopkins of Yerkes National Primate Research Center in Atlanta, who was not involved in the study, questioned some of its methodology, such as how the scientists elicited and recorded the chimps’ calls, but called it “interesting work.”

Chimps have specific grunts, barks, hoots and other vocalizations for particular foods, for predators and for requests such as “look at me,” which members of their troop understand.

Earlier studies had shown that these primates, humans’ closest living relatives, can learn totally new calls in research settings through intensive training. And a 2012 study led by Yerkes’ Hopkins showed that young chimps are able to pick up sounds meaning “human, pay attention to me,” from their mothers.

But no previous research had shown that chimps can replace a call they had used for years with one used by another troop. Instead, primatologists had thought that sounds referring to objects in the environment were learned at a young age and essentially permanent, with any variations reflecting nuances such as how excited the animal is about, say, a banana.

In the new research, scientists studied adult chimpanzees that in 2010 had been moved from a safari park in the Netherlands to Scotland’s Edinburgh Zoo, to live with nine other adults in a huge new enclosure.

It took three years, and the formation of strong social bonds among the animals, but the grunt that the seven Dutch chimps used for “apple” (a favorite food) changed from a high-pitched eow-eow-eow to the lower-pitched udh-udh-udh used by the six Scots, said co-author Simon Townsend of the University of Zurich. The change was apparent even to non-chimp-speakers (scientists).

“We showed that, through social learning, the chimps could change their vocalizations,” Townsend said in an interview. That suggests human language isn’t unique in using socially-learned sounds to signify objects.

Unanswered is what motivated the Dutch chimps to sound more like the Scots: to be better understood, or to fit in by adopting the reining patois?

(Reporting by Sharon Begley; Editing by Nick Zieminski)

Ebola Is Wiping Out the World’s Gorillas (The Daily Beast)

Finbarr O’Reilly/Reuters


In just four decades, Ebola has wiped out one third of the world’s chimp and gorilla populations. If it continues, the results will be devastating.

While coverage of the current Ebola epidemic in West Africa remains centered on the human populations in Guinea, Sierra Leone, and Liberia, wildlife experts’ concern is mounting over the virus’ favorite victims: great apes.

Guinea, where the epidemic originated, has the largest population of chimpanzees in all of West Africa. Liberia is close behind. Central Africa is home to western lowland gorillas, the largest and most widespread of all four species. Due to forest density, the number of those infected is unknown. But with hundreds of thousands of ape casualties from Ebola, it’s doubtful they’ve escaped unscathed.

Animal activists are ramping up efforts to find an Ebola vaccine for great apes, but with inadequate international support for human research, their mission could be seen as competing with one to save humans. Experts from the Jane Goodall Institute of Canada insist such apprehension would be misplaced. Two streams of funding—one for humans, one for apes—can coexist in this epidemic, they assert, and must.

“The media was really focusing on human beings,” Sophie Muset, project manager for JGI, says. “But it has been traumatic to [the great ape] population for many years.”

Over the course of just four decades, Ebola has wiped out one third of the world’s population of chimpanzees and gorillas, which now stand at less than 300,000 and 95,000 respectively.

The first large-scale “die-offs” due to Ebola began in the late 1990s, and haven’t stopped. Over the course of just four decades, Ebola has wiped out one third of the world’s population of chimpanzees and gorillas, which now stand at less than 300,000 and 95,000 respectively. Both species are now classified as endangered by the International Union for Conservation of Nature; western gorillas are “critically” so.

One of earliest Ebola “die-offs” of great apes came in 1994, when an Ebola outbreak in Minkébé decimated the region’s entire population—once the second largest in the world. In 2002, an outbreak in the Democratic Republic of Congo wiped out 95 percent of the region’s gorilla population. And an equally brutal attack broke out in 2006, when Ebola Zaire in Gabon (the same strain as the current outbreak) left an estimated 5,000 gorillas dead.

The dwindling population of both species, combined with outside poaching threats, means Ebola poses a very real threat to their existence. To evaluate the damage thus far, the Wild Chimpanzee Foundation is conducting population assessments in West Africa, with the goal of getting a rough estimate of how many have died. Given the combined damage that Ebola has inflicted on this population, the results are likely to be troubling.

In a way, great apes are Ebola’s perfect victims. Acutely tactile mammals, their dynamic social environments revolve around intimacy with each other. Touching hands, scratching backs, hugging, kissing, and tickling, they are near constantly intertwined—giving Ebola a free ride.

In a May 2007 study from The American Naturalist, researchers studying the interactions between chimpanzees and gorillas found evidence the Ebola can even spread between the social groups. At three different sites in northern Republic of Congo, they found bacteria from gorillas and chimps on the same fruit trees. For a virus that spreads through bodily fluids, this is an ideal scenario.

“They live in groups [and] they are very close,” says Muset, who has worked with chimps on the ground in Uganda and the DRC. “Since Ebola transmission happens through body fluids, it spreads very fast.”

For gorillas in particular, this culture proves deadly, making their mortality rate for this virus closer to  95 percent. But like humans, the corpses of chimpanzees and gorillas remain contagious with Ebola for days. While the chimps and gorillas infected with Ebola will likely die in a matter of days, the virus can live on in their corpse for days—in turn, spreading to humans who eat or touch their meat.

It is one such interaction that could result in the spread from apes to humans. But in this particular outbreak, experts have zeroed in on the fruit bat (believed to be the original carrier) as the source. The index patient, a 2-year-old in Guinea, was reportedly playing on a tree with a fruit bat colony.

Whether or not a great ape was involved in the transmission of the virus to humans during this outbreak is unknown. Such an interaction is possible. Interestingly, however, it’s not the risk that great apes with Ebola pose to humans that wildlife experts find most concerning. It’s the risk that their absence poses to the wild.

Owing to a diet consisting mostly of fruit, honey, and leaves, gorillas and chimpanzees are crucial to forest life. Inadvertently distributing seeds and pollen throughout the forest, they stimulate biodiversity within it. Without them, the biodiversity of the vegetation may plummet, endangering all of the species that relied on it—and, in turn, the people that relied on them.

“They are not the only ones who act as seed dispersers,” says Muset. “But they are the big players in that field. So when [a die-off] happens, it can decimate an entire forest.”

Wildlife experts worldwide are working to raise both awareness and funds for a vaccination process. It’s a battle that she says was gaining speed last January, when a researcher announced that he had found a vaccine that could work in chimps But as the epidemic in West Africa grew, the focus shifted.

But Muset says its time to return to the project. “There is a vaccine, but it has never been tested on chimpanzees,” she says.  “Progress has been made, and preliminary testing done, but testing in the field need to happen to make it real.”

As to the question of whether it’s ethical to be searching for a vaccine for wild animals when humans are still suffering as well, Muset is honest. “For sure there is a direct competition here. But wildlife and humans have a lot of diseases in common that they can transmit from one to the other,” she says. “And I think you can think of it as two streams of funding, one to wildlife and the other to human beings.”

While it’s great apes that wildlife experts are seeking to save, human nature as a whole, Muset argues, is at stake. “If you want a healthy ecosystem, the more you have to invest in health for wildlife and humans,” she says. “Then, the better place it will be.  Because really, it all works together.”

Dogs hear our words and how we say them (Science Daily)


November 26, 2014


Cell Press


When people hear another person talking to them, they respond not only to what is being said — those consonants and vowels strung together into words and sentences — but also to other features of that speech — the emotional tone and the speaker’s gender, for instance. Now, a report provides some of the first evidence of how dogs also differentiate and process those various components of human speech.


The results from this study support the idea that our canine companions are paying attention “not only to who we are and how we say things, but also to what we say,” authors say. Credit: © Uros Petrovic / Fotolia

When people hear another person talking to them, they respond not only to what is being said–those consonants and vowels strung together into words and sentences–but also to other features of that speech–the emotional tone and the speaker’s gender, for instance. Now, a report in the Cell Press journal Current Biology on November 26 provides some of the first evidence of how dogs also differentiate and process those various components of human speech.

“Although we cannot say how much or in what way dogs understand information in speech from our study, we can say that dogs react to both verbal and speaker-related information and that these components appear to be processed in different areas of the dog’s brain,” says Victoria Ratcliffe of the School of Psychology at the University of Sussex.

Previous studies showed that dogs have hemispheric biases–left brain versus right–when they process the vocalization sounds of other dogs. Ratcliffe and her supervisor David Reby say it was a logical next step to investigate whether dogs show similar biases in response to the information transmitted in human speech. They played speech from either side of the dog so that the sounds entered each of their ears at the same time and with the same amplitude.

“The input from each ear is mainly transmitted to the opposite hemisphere of the brain,” Ratcliffe explains. “If one hemisphere is more specialized in processing certain information in the sound, then that information is perceived as coming from the opposite ear.”

If the dog turned to its left, that showed that the information in the sound being played was heard more prominently by the left ear, suggesting that the right hemisphere is more specialized in processing that kind of information.

The researchers did observe general biases in dogs’ responses to particular aspects of human speech. When presented with familiar spoken commands in which the meaningful components of words were made more obvious, dogs showed a left-hemisphere processing bias, as indicated by turning to the right. When the intonation or speaker-related vocal cues were exaggerated instead, dogs showed a significant right-hemisphere bias.

“This is particularly interesting because our results suggest that the processing of speech components in the dog’s brain is divided between the two hemispheres in a way that is actually very similar to the way it is separated in the human brain,” Reby says.

Of course, it doesn’t mean that dogs actually understand everything that we humans might say or that they have a human-like ability of language–far from it. But, says Ratcliffe, these results support the idea that our canine companions are paying attention “not only to who we are and how we say things, but also to what we say.”

All of this should come as good news to many of us dog-loving humans, as we spend considerable time talking to our respective pups already. They might not always understand you, but they really are listening.

Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.

Journal Reference:

  1. Ratcliffe et al. Orienting asymmetries in dogs’ responses to different communicatory components of human speech. Current Biology, November 2014

A Magisterial Synthesis Of Apes And Human Evolution (Forbes)

11/23/2014 @ 10:31AM By John Farrell

There are books to read from cover to cover in a week or two, and then there are the ones you dip into over and over again, because they aren’t books so much as encyclopedias.

Russell H. Tuttle’s Apes and Human Evolution is one of these. Like the late Stephen Jay Gould’s magisterial Structure of Evolutionary Theory, Tuttle’s tome is a grand synthesis of all the latest research and data about apes and their relation to us.

Tuttle is Professor of Anthropology, Evolutionary Biology, History of Science and Medicine and the College at the University of Chicago.

Tuttle believes that bipedalism preceded the development of the brain in early humans –and was likely something inherited from smaller apes already used to using their feet to move laterally along branches in trees. Although chimpanzees and bonobos are our closest relatives on the evolutionary tree, they do not represent in their own locomotion good proto-models of what led to human upright posture and walking.

While the book does not need to be read in any particular order, the first two chapters set the stage and the terminology for the rest of Apes and Human Evolution, which consists of five parts, totaling 13 dense chapters. A glossary of terms would have helped, but it’s not too much of a distraction to look up the specialist terms Tuttle introduces in these opening sections.

But lest you think it is intended chiefly for colleagues in the fields of anthropology and evolutionary biology, Tuttle’s style throughout is crisp and often witty. (The chapter on the development of human bipedalism, for example, is called ‘How to Achieve an Erection’.)

Professor Russell H. Tuttle, University of Chicago. Image courtesy of

The opening chapter, ‘Mongrel Models and Seductive Scenarios of Human Evolution’ discusses several hypotheses of human origins, some of which Tuttle argues are biased and which in recent years more detailed study of apes has refuted.

He has a low opinion, for example, of the idea that humans are in essence a species of ‘killer apes’, a notion that gained popularity during the last century. “The views of Charles Darwin,” he writes, “are restrained in comparison with the speculations by the advocates of killer ape scenarios, which flourished for several decades after the horrors of World War I and World War II.”

Darwin portrayed early man (his term) as having “sprung from some comparatively weak creature,” who was not speedy and who lacked natural bodily defenses, namely, formidable canine teeth. Consequently, this bipedal creature was stimulated to use his intellectual powers to make weapons for defense and hunting and to cooperate with “his fellow-men”.

What distinguishes humans among the approximately 400 extant species of primates? In Tuttle’s view, a constellation of morphological and behavioral characteristics, some of which only can be traced precisely through the fossil and archeological records.

Obligate terrestrial bipedalism, precision-gripping hands, reduced teeth and jaws, and ballooned brains can be identified if fossils are complete enough in the skeletal regions under study. Archeological artifacts and features can indicate the presence of tool use and manufacture, control of fire, fabricated shelters, bodily ornamentation, mortuary practice, plastic and graphic arts, and other indications of cognitive skills and culture.

There are also the features that can’t be easily found in fossils or the archeological records, primarily social: cooperation, the ability to enlist new members from outside the immediate community of hominids.

Space does not allow a detailed review of each chapter, summaries of which you can find here. But in the final part, ‘What Makes Us Human?’, Tuttle reveals more of his own philosophical reflections on the matter.

One passage that struck me, for example, occurs in the sub-section, ‘What is More Real: God or Race?’

I believe that God is an ever-increasing collective emergent of the love of all beings past, present and future, but this cannot be proven by available scientific methods of experimentation or controlled comparison. In contrast, the belief in race, in the sense of biological subspecies of Homo Sapiens, lacks a tangible basis; indeed, it has been proven unsupportable genomically, behaviorally, and phenotypically.

Individuals and political groups have manipulated both God and race for nefarious purposes, but actions rooted in the human capacity to affiliate with non-kin, to cooperate, and especially to unite in love and respect for the agency of others has given rise to a variety of constructive social codes that facilitate intragroup and extensive intergroup harmony and mitigate disruptive personal and social behavior.

Whereas scientists possess the means to eliminate belief in human races, they lack the means to eradicate belief in God, and frankly they are probably wasting time and treasure on the exercise.

There’s an optimism here I found somewhat reminiscent of the Jesuit paleontologist Teilhard de Chardin, who had a very goal-oriented view of humanity and its role in cosmic evolution.

I could’t resist asking Tuttle whether Teilhard’s writings had any influence on his own thought as he embarked on his career in the 1960s. This was around the time that Teilhard’s writings were becoming most influential.

“Quite the contrary,” Tuttle replied in an email. “I thought Phenomenon of Man was rubbish. Father Teilhard wanted to be an evolutionary biologist while not giving up God. He did a shoddy job of reconciling deep religious belief with evolutionary biology…for one, he was an orthogenecist [i.e., he believed in progressive, directional evolution, toward a universal goal].”

“I cannot see a reconciliation of the two realms,” Tuttle added. “I believe in the power of love which some or many see as an aspect of God. But I do not think  there is a celestial, etherial being that is interested in us or that makes good or bad things happen.”

Tuttle elaborated on this in a recent review he wrote for the American Journal of Psychology: “As a Christian participant observer into my late teens, followed by two decades attempting to be an atheist, and then participation in the music ministry at a wide variety of churches over the past 30 years, I aver that the bonding of congregations based on love of God and one another are substantive enough to withstand the sarcastic remarks and mockery of professed atheists who command notable space in print media and on the airways.”

Apes and Human Evolution is also available in Kindle Edition. But given the slight difference in price, I recommend getting the print edition.

Chimpanzees have favorite ‘tool set’ for hunting staple food of army ants (University of Cambridge)


Fred Lewsey

This video shows a chimpanzee who has constructed a tool with which to investigate a camera (Nimba mountains, Guinea). 

West African chimpanzees will search far and wide to find Alchornea hirtella, a spindly shrub whose straight shoots provide the ideal tools to hunt aggressive army ants in an ingenious fashion, new research shows.

The plant provides the animals with two different types of tool, a thicker shoot for ‘digging’ and a more slender tool for ‘dipping’.

On locating an army ant colony, chimpanzees will dig into the nest with the first tool – aggravating the insects. They then dip the second tool into the nest, causing the angry ants to swarm up it. Once the slender shoot is covered in ants, the chimpanzees pull it out and wipe their fingers along it: scooping up the ants until they have a substantial handful that goes straight into the mouth in one deft motion.

This technique – ‘ant dipping’ – was previously believed to be a last resort for the hungry apes, only exploited when the animal’s preferred food of fruit couldn’t be found. But the latest study, based on over ten years of data, shows that, in fact, army ants are a staple in the chimpanzee diet – eaten all year round regardless of available sources of fruit. Ants may be an important source of essential nutrients not available in the typical diet, say researchers, as well as a potential source of protein and fats.

The new research, published today in the American Journal of Primatology, was led by Dr Kathelijne Koops from the University of Cambridge’s Division of Biological Anthropology and Junior Research Fellow of Homerton College.

This video shows a male chimpanzee looking on at a female who is using an ant-dipping tool (Kalinzu Forest, Uganda).

“Ant dipping is a remarkable feat of problem-solving on the part of chimpanzees,” said Koops. “If they tried to gather ants from the ground with their hands, they would end up horribly bitten with very little to show for it. But by using a tool set, preying on these social insects may prove as nutritionally lucrative as hunting a small mammal – a solid chunk of protein.”

Koops points out that if Alchornea hirtella is nowhere to be found, chimps will fashion tools from other plants – but seemingly only after an exhaustive search for their preferred tool provider.

Previous research has shown that chimpanzees will actually select longer tools for faster, more aggressive types of army ants. The average ‘dipping’ tool length across the study was 64 centimetres, but dipping tools got up to 76 cm.

The question for Koops is one of animal culture: how do chimpanzees acquire knowledge of such sophisticated techniques?

“Scientists have been working on ruling out simple environmental and genetic explanations for group differences in behaviours, such as tool use, and the evidence is pointing strongly towards it being cultural,” said Koops. “They probably learn tool use behaviours from their mother and others in the group when they are young.”

The research for the ant-dipping study – which took place in Guinea’s Nimba mountains – proved challenging, as the chimpanzees were not habituated to people – so the team acted almost as archaeologists, studying ‘exploited’ ants nests to measure abandoned tool sets and “sifting through faeces for ants heads”.

IMAGE: This image shows a chimpanzee using an ant-dipping tool.

To further study these illusive creatures, Koops set up cameras to take extensive video footage of the chimpanzees and their tool use. In doing so, she managed to capture a chimpanzee who has constructed a tool with which to investigate the camera itself – prodding it curiously and then sniffing the end of the tool (VIDEO 1).

“This study is part of a big ongoing research project. The next stages will involve looking at social opportunities to learn: how much time do youngsters spend within arm’s length of other individuals; how much time do they spend close to their mother; as well as innate predispositions to explore and engage with objects,” said Koops.

A video clip from the Kalinzu Forest in Uganda, where Koops is currently conducting comparative studies on East African chimpanzees, captures a male chimpanzee seemingly looking on enviously at a female who has managed to construct a much better dipping tool than his own and is feasting heartily as a consequence (VIDEO 2). Koops suggests this kind of observing of other individuals may lead to learning within a chimpanzee community.

“By studying our closest living relatives we gain a window into the evolutionary past which allows us to shed light on the origins of human technology and material culture,” added Koops.

A link to the paper can be found here:

Crocodiles are sophisticated hunters: Work as a team to hunt their prey (Science Daily)

Date: October 13, 2014

Source: University of Tennessee

Summary: Recent studies have found that crocodiles and their relatives are highly intelligent animals capable of sophisticated behavior such as advanced parental care, complex communication and use of tools for hunting. New research shows just how sophisticated their hunting techniques can be.

Crocodiles (stock image). Credit: © aarstudio / Fotolia

Recent studies have found that crocodiles and their relatives are highly intelligent animals capable of sophisticated behavior such as advanced parental care, complex communication and use of tools for hunting.

New University of Tennessee, Knoxville, research published in the journal Ethology Ecology and Evolution shows just how sophisticated their hunting techniques can be.

Vladimir Dinets, a research assistant professor in UT’s Department of Psychology, has found that crocodiles work as a team to hunt their prey. His research tapped into the power of social media to document such behavior.

Studying predatory behavior by crocodiles and their relatives such as alligators and caimans in the wild is notoriously difficult because they are ambush hunters, have slow metabolisms and eat much less frequently than warm-blooded animals. In addition, they are mostly nocturnal and often hunt in murky, overgrown waters of remote tropical rivers and swamps. Accidental observations of their hunting behavior are often made by non-specialists and remain unpublished or appear in obscure journals.

To overcome these difficulties, Dinets used Facebook and other social media sites to solicit eyewitness accounts from amateur naturalists, crocodile researchers and nonscientists working with crocodiles. He also looked through diaries of scientists and conducted more than 3,000 hours of observations himself.

All that work produced just a handful of observations, some dating back to the 19th century. Still, the observations had something in common — coordination and collaboration among the crocodiles in hunting their prey.

“Despite having been made independently by different people on different continents, these records showed striking similarities. This suggests that the observed phenomena are real, rather than just tall tales or misinterpretation,” said Dinets.

Crocodiles and alligators were observed conducting highly organized game drives. For example, crocodiles would swim in a circle around a shoal of fish, gradually making the circle tighter until the fish were forced into a tight “bait ball.” Then the crocodiles would take turns cutting across the center of the circle, snatching the fish.

Sometimes animals of different size would take up different roles. Larger alligators would drive a fish from the deeper part of a lake into the shallows, where smaller, more agile alligators would block its escape. In one case, a huge saltwater crocodile scared a pig into running off a trail and into a lagoon where two smaller crocodiles were waiting in ambush — the circumstances suggested that the three crocodiles had anticipated each other’s positions and actions without being able to see each other.

“All these observations indicate that crocodilians might belong to a very select club of hunters — just 20 or so species of animals, including humans — capable of coordinating their actions in sophisticated ways and assuming different roles according to each individual’s abilities. In fact, they might be second only to humans in their hunting prowess,” said Dinets.

Dinets said more observations are needed to better understand what exactly the animals are capable of. “And these observations don’t come easily,” he said.

Previous research by Dinets discovered that crocodiles are able to climb trees and use lures such as sticks to hunt prey. More of his crocodile research can be found in his book “Dragon Songs.”

Journal Reference:

  1. Vladimir Dinets. Apparent coordination and collaboration in cooperatively hunting crocodilians. Ethology Ecology & Evolution, 2014; 1 DOI:10.1080/03949370.2014.915432

Killer whales learn to communicate like dolphins (Science Daily)

Date: October 7, 2014

Source: Acoustical Society of America (ASA)

Summary: The sounds that most animals use to communicate are innate, not learned. However, a few species, including humans, can imitate new sounds and use them in appropriate social contexts. This ability, known as vocal learning, is one of the underpinnings of language. Now, researchers have found that killer whales can engage in cross-species vocal learning: when socialized with bottlenose dolphins, they shifted the sounds they made to more closely match their social partners.

Killer whales (Orcinus orca) can engage in cross-species vocal learning: when socialized with bottlenose dolphins, they shifted the types of sounds they made to more closely match their social partners. Credit: © RKP / Fotolia

From barks to gobbles, the sounds that most animals use to communicate are innate, not learned. However, a few species, including humans, can imitate new sounds and use them in appropriate social contexts. This ability, known as vocal learning, is one of the underpinnings of language.

Vocal learning has also been observed in bats, some birds, and cetaceans, a group that includes whales and dolphins. But while avian researchers have characterized vocal learning in songbirds down to specific neural pathways, studying the trait in large marine animals has presented more of a challenge.

Now, University of San Diego graduate student Whitney Musser and Hubbs-SeaWorld Research Institute senior research scientist Dr. Ann Bowles have found that killer whales (Orcinus orca) can engage in cross-species vocal learning: when socialized with bottlenose dolphins, they shifted the types of sounds they made to more closely match their social partners. The results, published in The Journal of the Acoustical Society of America, suggest that vocal imitation may facilitate social interactions in cetaceans.

Killer whales have complex vocal repertoires made up of clicks, whistles and pulsed calls — repeated brief bursts of sound punctuated with silence. The acoustic features of these vocalizations, such as their duration, pitch and pulse pattern, vary across social groups. Whales that are closely related or live together produce similar pulsed calls that carry vocal characteristics distinct to the group, known as a dialect.

“There’s been an idea for a long time that killer whales learn their dialect, but it isn’t enough to say they all have different dialects so therefore they learn. There needs to be some experimental proof so you can say how well they learn and what context promotes learning,” said Bowles.

Testing vocal learning ability in social mammals usually requires observing the animal in a novel social situation, one that might stimulate them to communicate in new ways. Bottlenose dolphins provide a useful comparison species in this respect: they make generally similar sounds but produce them in different proportions, relying more on clicks and whistles than the pulsed calls that dominate killer whale communication.

“We had a perfect opportunity because historically, some killer whales have been held with bottlenose dolphins,” said Bowles. By comparing old recordings of vocalization patterns from the cross-socialized subjects with recordings of killer whales and bottlenose dolphins housed in same-species groups, Bowles and her team were able to evaluate the degree to which killer whales learned vocalization patterns from their cross-species social partners.

All three killer whales that had been housed with dolphins for several years shifted the proportions of different call types in their repertoire to more closely match the distribution found in dolphins — they produced more clicks and whistles and fewer pulsed calls. The researchers also found evidence that killer whales can learn completely new sounds: one killer whale that was living with dolphins at the time of the experiment learned to produce a chirp sequence that human caretakers had taught to her dolphin pool-mates before she was introduced to them.

Vocal learning skills alone don’t necessarily mean that killer whales have language in the same way that humans do. However, they do indicate a high level of neural plasticity, the ability to change circuits in the brain to incorporate new information. “Killer whales seem to be really motivated to match the features of their social partners,” said Bowles, though the adaptive significance of the behavior is not yet known.

There are immediate reasons to study the vocal patterns of cetaceans: these marine mammals are threatened by human activities through competition for fishery resources, entanglement in fishing gear, collisions with vessels, exposure to pollutants and oil spills and, ultimately, shrinking habitats due to anthropogenic climate change. If their social bonds are closely linked to their vocalizations, killer whales’ ability to survive amidst shifting territories and social groups may be tied to their ability to adapt their communication strategies.

“It’s important to understand how they acquire [their vocalization patterns], and lifelong, to what degree they can change it, because there are a number of different [cetacean] populations on the decline right now,” said Bowles. “And where killer whales go, we can expect other small whale species to go — it’s a broader question.”

Journal Reference:

  1. Whitney B. Musser, Ann E. Bowles, Dawn M. Grebner, and Jessica L. Crance.Differences in acoustic features of vocalizations produced by killer whales cross-socialized with bottlenose dolphins. The Journal of the Acoustical Society of America, 2014 DOI: 10.1121/1.4893906

Chimp social network shows how new ideas catch on (New Scientist)

19:00 30 September 2014 by Catherine Brahic

Three years ago, an adult chimpanzee called Nick dipped a piece of moss into a watering hole in Uganda’s Budongo Forest. Watched by a female, Nambi, he lifted the moss to his mouth and squeezed the water out. Nambi copied him and, over the next six days, moss sponging began to spread through the community. A chimp trend was born.

Until that day in November 2011, chimps had only been seen to copy actions in controlled experimentsMovie Camera, and social learning had never been directly observed in the wild.

To prove that Nambi and the seven other chimps who started using moss sponges didn’t just come up with the idea independently, Catherine Hobaiter of the University of St Andrews, UK, and her colleagues used their own innovation: a statistical analysis of the community’s social network. They were able to track how moss-sponging spread and calculated that once a chimp had seen another use a moss sponge, it was 15 times more likely to do so itself.

A decade ago it was believed that only humans have the capacity to imitate, says Frans de Waal of Emory University in Atlanta, Georgia. “The present study is the first on apes to show by means of networking analysis that habits travel along paths of close relationships,” he says, adding that a similar idea was shown not long ago for humpback whale hunting techniques.

Caught in the act

Copying may seem like the easiest thing to us, but not all animals are able. Chimps at the Gombe Stream reserve in Tanzania can copy each other using twigs to fish out termites, but the baboons that watch them haven’t picked up the trick. “They don’t get it,” says Andrew Whiten of the University of St Andrews.

Whiten previously listed 39 behaviours that were found only in some communities of chimps, suggesting these were picked up from other group members rather than being innate behaviours. Since then, more have been added, but they still number in the dozens, not the thousands.

Given how rarely chimps pick up trends, it’s exciting that someone was on hand to watch it happen in this latest study, says Whiten.

Ultimately, he says, our ability to both invent and copy meant our ancestors could exploit a cognitive niche. “They began hunting large game by doing it the brainy way.” Imitation, it turns out, is not just the sincerest form of flattery, it’s also a smart thing to do.

Journal reference: PLoS Biology, DOI: 10.1371/journal.pbio.1001960

Nature of war: Chimps inherently violent; Study disproves theory that ‘chimpanzee wars’ are sparked by human influence (Science Daily)

Date: September 17, 2014

Source: Lincoln Park Zoo

Summary: Of all of the world’s species, humans and chimpanzees are some of the only species to coordinate attacks on their own members. Since Jane Goodall introduced lethal inter-community killings, primatologists have debated the concept of warfare in this genus. New research from an international coalition of ape researchers has shed new light on the subject, suggesting that human encroachment and interference is not, as previous researchers have claimed, an influential predictor of chimp-on-chimp aggression.

The Ngogo males have just killed a male from a neighboring group. After the male is dead, one of the Ngogo males leaps on the body of the dead animal. Credit: Image courtesy of John Mitani 

Of all of the world’s species, humans and chimpanzees are some of the only to engage in coordinated attacks on other members of their same species. Jane Goodall was among the first to introduce the occurrence of lethal inter-community killings and since then primatologists and anthropologists have long debated the concept of warfare in this genus. Research theories have pointed to increased gains and benefits of killing off competitors and opening up increased access to key resources such as food or mates. In contrast, others have argued that warfare is a result of human impact on chimpanzees, such as habitat destruction or food provisioning, rather than adaptive strategies.

New research from an international coalition of ape researchers, published September 18 in the journalNature, has shed new light on the subject, suggesting that human encroachment and interference is not, as previous researchers have claimed, an influential predictor of chimp-on-chimp aggression.

The study began as a response to a growing number of commentators claiming that chimpanzee violence was caused by human impacts. “This is an important question to get right. If we are using chimpanzees as a model for understanding human violence, we need to know what really causes chimpanzees to be violent,” said University of Minnesota researcher Michael L. Wilson, lead author on the study.

“Humans have long impacted African tropical forests and chimpanzees, and one of the long-standing questions is if human disturbance is an underlying factor causing the lethal aggression observed,” explained co-author David Morgan, PhD, research fellow with the Lester E Fisher Center for the Study and Conservation of Apes at Lincoln Park Zoo in Chicago. Morgan has studied chimpanzees deep in the forests of Republic of Congo for 14 years. “A key take-away from this research is that human influence does not spur increased aggression within or between chimpanzee communities.”

A team of 30 ape researchers assembled extensive data sets spanning five decades of research gathered from 18 chimpanzee communities experiencing varying degrees of human influence. In all, data included pattern analysis of 152 killings by chimpanzees. The key findings indicate that a majority of violent attackers and victims of attack are male chimpanzees, and the information is consistent with the theory that these acts of violence are driven by adaptive fitness benefits rather than human impacts.

“Wild chimpanzee communities are often divided into two broad categories depending on whether they exist in pristine or human disturbed environments,” explained Morgan. “In reality, however, human disturbance can occur along a continuum and study sites included in this investigation spanned the spectrum. We found human impact did not predict the rate of killing among communities.

“The more we learn about chimpanzee aggression and factors that trigger lethal attacks among chimpanzees, the more prepared park managers and government officials will be in addressing and mitigating risks to populations particularly with changing land use by humans in chimpanzee habitat,” explained Morgan.

Journal Reference:

  1. Michael L. Wilson, Christophe Boesch, Barbara Fruth, Takeshi Furuichi, Ian C. Gilby, Chie Hashimoto, Catherine L. Hobaiter, Gottfried Hohmann, Noriko Itoh, Kathelijne Koops, Julia N. Lloyd, Tetsuro Matsuzawa, John C. Mitani, Deus C. Mjungu, David Morgan, Martin N. Muller, Roger Mundry, Michio Nakamura, Jill Pruetz, Anne E. Pusey, Julia Riedel, Crickette Sanz, Anne M. Schel, Nicole Simmons, Michel Waller, David P. Watts, Frances White, Roman M. Wittig, Klaus Zuberbühler, Richard W. Wrangham. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature, 2014; 513 (7518): 414 DOI: 10.1038/nature13727

Is empathy in humans and apes actually different? ‘Yawn contagion’ effect studied (Science Daily)

Date: August 12, 2014

Source: PeerJ

Summary: Whether or not humans are the only empathic beings is still under debate. In a new study, researchers directly compared the ‘yawn contagion’ effect between humans and bonobos — our closest evolutionary cousins. By doing so they were able to directly compare the empathic abilities of ourselves with another species, and found that a close relationship between individuals is more important to their empathic response than the fact that individuals might be from the same species.

Scientists have found that differences in levels of emotional contagion between humans and bonobos are attributable to the quality of relationships shared by individuals. Credit: Elisa Demuru

Whether or not humans are the only empathic beings is still under debate. In a new study, researchers directly compared the ‘yawn contagion’ effect between humans and bonobos (our closest evolutionary cousins). By doing so they were able to directly compare the empathic abilities of ourselves with another species, and found that a close relationship between individuals is more important to their empathic response than the fact that individuals might be from the same species.

The ability to experience others’ emotions is hard to quantify in any species, and, as a result, it is difficult to measure empathy in an objective way. The transmission of a feeling from one individual to another, something known as ‘emotional contagion,’ is the most basic form of empathy. Feelings are disclosed by facial expressions (for example sorrow, pain, happiness or tiredness), and these feelings can travel from an “emitting face” to a “receiving face.” Upon receipt, the mirroring of facial expressions evokes in the receiver an emotion similar to the emotion experienced by the sender.

Yawn contagion is one of the most pervasive and apparently trivial forms of emotional contagion. Who hasn’t been infected at least once by another person’s yawn (especially over dinner)? Humans and bonobos are the only two species in which it has been demonstrated that yawn contagion follows an empathic trend, being more frequent between individuals who share a strong emotional bond, such as friends, kin, and mates. Because of this similarity, researchers sought to directly compare the two species. Over the course of five years, they observed both humans and bonobos during their everyday activities and gathered data on yawn contagion by applying the same ethological approach and operational definitions. The results of their research are published today in the peer-reviewed journal PeerJ.

Two features of yawn contagion were compared: how many times the individuals responded to others’ yawns and how quickly. Intriguingly, when the yawner and the responder were not friends or kin, bonobos responded to others’ yawns just as frequently and promptly as humans did. This means that the assumption that emotional contagion is more prominent in humans than in other species is not necessarily the case.

However, humans did respond more frequently and more promptly than bonobos when friends and kin were involved, probably because strong relationships between humans are built upon complex and sophisticated emotional foundations linked to cognition, memory, and memories. In this case, the positive feedback linking emotional affinity and the mirroring process seems to spin faster in humans than in bonobos. In humans, such over-activation may explain the potentiated yawning response and also other kinds of unconscious mimicry response, such as happy, pained, or angry facial expressions.

In conclusion, this study suggests that differences in levels of emotional contagion between humans and bonobos are attributable to the quality of relationships shared by individuals. When the complexity of social bonds, typical of humans, is not in play,Homo sapiens climb down the tree of empathy to go back to the understory which we share with our ape cousins.

Journal Reference:

  1. Elisabetta Palagi, Ivan Norscia, Elisa Demuru. Yawn contagion in humans and bonobos: emotional affinity matters more than species. PeerJ, 2014; 2: e519 DOI: 10.7717/peerj.519

Learning the smell of fear: Mothers teach babies their own fears via odor, animal study shows (Science Daily)

Date: July 28, 2014

Source: University of Michigan Health System

Summary: Babies can learn what to fear in the first days of life just by smelling the odor of their distressed mothers’, new research suggests. And not just “natural” fears: If a mother experienced something before pregnancy that made her fear something specific, her baby will quickly learn to fear it too — through her odor when she feels fear.

Even when just the odor of the frightened mother was piped in to a chamber where baby rats were exposed to peppermint smell, the babies developed a fear of the same smell, and their blood cortisol levels rose when they smelled it. Credit: Image courtesy of University of Michigan Health System

Babies can learn what to fear in the first days of life just by smelling the odor of their distressed mothers, new research suggests. And not just “natural” fears: If a mother experienced something before pregnancy that made her fear something specific, her baby will quickly learn to fear it too — through the odor she gives off when she feels fear.

In the first direct observation of this kind of fear transmission, a team of University of Michigan Medical School and New York University studied mother rats who had learned to fear the smell of peppermint — and showed how they “taught” this fear to their babies in their first days of life through their alarm odor released during distress.

In a new paper in the Proceedings of the National Academy of Sciences, the team reports how they pinpointed the specific area of the brain where this fear transmission takes root in the earliest days of life.

Their findings in animals may help explain a phenomenon that has puzzled mental health experts for generations: how a mother’s traumatic experience can affect her children in profound ways, even when it happened long before they were born.

The researchers also hope their work will lead to better understanding of why not all children of traumatized mothers, or of mothers with major phobias, other anxiety disorders or major depression, experience the same effects.

“During the early days of an infant rat’s life, they are immune to learning information about environmental dangers. But if their mother is the source of threat information, we have shown they can learn from her and produce lasting memories,” says Jacek Debiec, M.D., Ph.D., the U-M psychiatrist and neuroscientist who led the research.

“Our research demonstrates that infants can learn from maternal expression of fear, very early in life,” he adds. “Before they can even make their own experiences, they basically acquire their mothers’ experiences. Most importantly, these maternally-transmitted memories are long-lived, whereas other types of infant learning, if not repeated, rapidly perish.”

Peering inside the fearful brain

Debiec, who treats children and mothers with anxiety and other conditions in the U-M Department of Psychiatry, notes that the research on rats allows scientists to see what’s going on inside the brain during fear transmission, in ways they could never do in humans.

He began the research during his fellowship at NYU with Regina Marie Sullivan, Ph.D., senior author of the new paper, and continues it in his new lab at U-M’s Molecular and Behavioral Neuroscience Institute.

The researchers taught female rats to fear the smell of peppermint by exposing them to mild, unpleasant electric shocks while they smelled the scent, before they were pregnant. Then after they gave birth, the team exposed the mothers to just the minty smell, without the shocks, to provoke the fear response. They also used a comparison group of female rats that didn’t fear peppermint.

They exposed the pups of both groups of mothers to the peppermint smell, under many different conditions with and without their mothers present.

Using special brain imaging, and studies of genetic activity in individual brain cells and cortisol in the blood, they zeroed in on a brain structure called the lateral amygdala as the key location for learning fears. During later life, this area is key to detecting and planning response to threats — so it makes sense that it would also be the hub for learning new fears.

But the fact that these fears could be learned in a way that lasted, during a time when the baby rat’s ability to learn any fears directly was naturally suppressed, is what makes the new findings so interesting, says Debiec.

The team even showed that the newborns could learn their mothers’ fears even when the mothers weren’t present. Just the piped-in scent of their mother reacting to the peppermint odor she feared was enough to make them fear the same thing.

And when the researchers gave the baby rats a substance that blocked activity in the amygdala, they failed to learn the fear of peppermint smell from their mothers. This suggests, Debiec says, that there may be ways to intervene to prevent children from learning irrational or harmful fear responses from their mothers, or reduce their impact.

From animals to humans: next steps

The new research builds on what scientists have learned over time about the fear circuitry in the brain, and what can go wrong with it. That work has helped psychiatrists develop new treatments for human patients with phobias and other anxiety disorders — for instance, exposure therapy that helps them overcome fears by gradually confronting the thing or experience that causes their fear.

In much the same way, Debiec hopes that exploring the roots of fear in infancy, and how maternal trauma can affect subsequent generations, could help human patients. While it’s too soon to know if the same odor-based effect happens between human mothers and babies, the role of a mother’s scent in calming human babies has been shown.

Debiec, who hails from Poland, recalls working with the grown children of Holocaust survivors, who experienced nightmares, avoidance instincts and even flashbacks related to traumatic experiences they never had themselves. While they would have learned about the Holocaust from their parents, this deeply ingrained fear suggests something more at work, he says.

Going forward, he hopes to work with U-M researchers to observe human infants and their mothers — including U-M psychiatrist Maria Muzik, M.D. and psychologist Kate Rosenblum, Ph.D., who run a Women and Infants Mental Health clinic and research program and also work with military families. The program is currently seeking women and their children to take part in a range of studies.

Journal Reference:

  1. Jacek Debiec and Regina Marie Sullivan. Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. PNAS, July 28, 2014 DOI: 10.1073/pnas.1316740111

Monkeys Use Researchers as Human Shields (IFLScience)

July 26, 2014 | by Janet Fang

photo credit: hyper7pro via Flickr

A team of researchers working in South Africa have a sneaking suspicion that they’re being used as human shields. Monkeys who normally spend their time in trees avoiding predators like leopards and raptors seem to relax their vigilance a little around humans, venturing down to eat.

Humans, as well as human infrastructure, can alter the relationship between predators and prey by shielding one from the other. A stone wall filled with crevices could provide a refuge for a small critter, while a person’s presence might indirectly guard an animal against its would-be killer. Those who are used to us may actually begin to take more risks when we’re around.

To quantify this alteration in risk-taking behavior, Katarzyna Nowak of Durham University and colleagues tested the magnitude of the “human shield effect” on two groups of samango monkeys (Cercopithecus mitis erythrarcus) at a site with high natural predator density and no human hunting pressure.

Samango monkeys spend most of their time in trees avoiding predators on the ground, like large cats, and those in the canopies above, like birds of prey. They don’t stray very far, and they don’t climb too high. When observed by humans, however, the monkeys preferred to climb down to eat food from the forest floor. The work was published in Behavioral Ecology earlier this month.

The researchers set up feeding stations at various levels in the forest and looked at a fear measure known as “giving-up densities.” That’s the density of food remaining in a patch when a forager leaves. (It’s a little like, say, you were in a hurry and didn’t eat your whole burger.) With lots of predators at this site, the giving-up densities were greatest at ground level (0.1 meter) relative to the three tree canopy levels (2.5, 5, and 7.5 meters up). This highlights a strong vertical axis of fear, as they researchers say.

“The amount of food monkeys depleted from buckets over the course of the experiment varied with height, with the most food left uneaten at ground level, where there is a risk of predation by leopards and caracals,” Nowak tells The Independent.

When human followers were present, giving-up densities were reduced at all four heights. In one of the groups, the vertical axis totally disappeared in the presence of human observers. By passively keeping terrestrial predators away from the area, we seem to lower the monkeys’ perceived risks.

“When a human observer was following monkeys, they ate more food at every height, with the most notable differences at the bottom two levels,” Nowak explains. “Animals are expected to deplete more food where and when they feel safe [but] we had not expected human followers to have such strong effect!”