Arquivo da tag: Cães

A New Origin Story for Dogs (The Atlantic)


June 2, 2016

The first domesticated animals may have been tamed twice.

Katie Salvi


Tens of thousands of years ago, before the internet, before the Industrial Revolution, before literature and mathematics, bronze and iron, before the advent of agriculture, early humans formed an unlikely partnership with another animal—the grey wolf. The fates of our two species became braided together. The wolves changed in body and temperament. Their skulls, teeth, and paws shrank. Their ears flopped. They gained a docile disposition, becoming both less frightening and less fearful. They learned to read the complex expressions that ripple across human faces. They turned into dogs.

Today, dogs are such familiar parts of our lives—our reputed best friends and subject of many a meme—that it’s easy to take them, and what they represent, for granted. Dogs were the first domesticated animals, and their barks heralded the Anthropocene. We raised puppies well before we raised kittens or chickens; before we herded cows, goats, pigs, and sheep; before we planted rice, wheat, barley, and corn; before we remade the world.

“Remove domestication from the human species, and there’s probably a couple of million of us on the planet, max,” says archaeologist and geneticist Greger Larson. “Instead, what do we have? Seven billion people, climate change, travel, innovation and everything. Domestication has influenced the entire earth. And dogs were the first.” For most of human history, “we’re not dissimilar to any other wild primate. We’re manipulating our environments, but not on a scale bigger than, say, a herd of African elephants. And then, we go into partnership with this group of wolves. They altered our relationship with the natural world.”

Larson wants to pin down their origins. He wants to know when, where, and how they were domesticated from wolves. But after decades of dogged effort, he and his fellow scientists are still arguing about the answers. They agree that all dogs, from low-slung corgis to towering mastiffs, are the tame descendants of wild ancestral wolves. But everything else is up for grabs.

Some say wolves were domesticated around 10,000 years ago, while others say 30,000. Some claim it happened in Europe, others in the Middle East, or East Asia. Some think early human hunter-gatherers actively tamed and bred wolves. Others say wolves domesticated themselves, by scavenging the carcasses left by human hunters, or loitering around campfires, growing tamer with each generation until they became permanent companions.

Dogs were domesticated so long ago, and have cross-bred so often with wolves and each other, that their genes are like “a completely homogenous bowl of soup,” Larson tells me, in his office at the University of Oxford. “Somebody goes: what ingredients were added, in what proportion and in what order, to make that soup?” He shrugs his shoulders. “The patterns we see could have been created by 17 different narrative scenarios, and we have no way of discriminating between them.”

The only way of doing so is to look into the past. Larson, who is fast-talking, eminently likable, and grounded in both archaeology and genetics, has been gathering fossils and collaborators in an attempt to yank the DNA out of as many dog and wolf fossils as he can. Those sequences will show exactly how the ancient canines relate to each other and to modern pooches. They’re the field’s best hope for getting firm answers to questions that have hounded them for decades.

And already, they have yielded a surprising discovery that could radically reframe the debate around dog domestication, so that the big question is no longer when it happened, or where, but how many times.

*    *   *

On the eastern edge of Ireland lies Newgrange, a 4,800-year-old monument that predates Stonehenge and the pyramids of Giza. Beneath its large circular mound and within its underground chambers lie many fragments of animal bones. And among those fragments, Dan Bradley from Trinity College Dublin found the petrous bone of a dog.

Press your finger behind your ear. That’s the petrous. It’s a bulbous knob of very dense bone that’s exceptionally good at preserving DNA. If you try to pull DNA out of a fossil, most of it will come from contaminating microbes and just a few percent will come from the bone’s actual owner. But if you’ve got a petrous bone, that proportion can be as high as 80 percent. And indeed, Bradley found DNA galore within the bone, enough to sequence the full genome of the long-dead dog.

Larson and his colleague Laurent Frantz then compared the Newgrange sequences with those of almost 700 modern dogs, and built a family tree that revealed the relationships between these individuals. To their surprise, that tree had an obvious fork in its trunk—a deep divide between two doggie dynasties. One includes all the dogs from eastern Eurasia, such as Shar Peis and Tibetan mastiffs. The other includes all the western Eurasian breeds, and the Newgrange dog.

The genomes of the dogs from the western branch suggest that they went through a population bottleneck—a dramatic dwindling of numbers. Larson interprets this as evidence of a long migration. He thinks that the two dog lineages began as a single population in the east, before one branch broke off and headed west. This supports the idea that dogs were domesticated somewhere in China.

But there’s a critical twist.

The team calculated that the two dog dynasties split from each other between 6,400 and 14,000 years ago.  But the oldest dog fossils in both western and eastern Eurasia are older than that. Which means that when those eastern dogs migrated west into Europe, there were already dogs there.

To Larson, these details only make sense if dogs were domesticated twice.

Here’s the full story, as he sees it. Many thousands of years ago, somewhere in western Eurasia, humans domesticated grey wolves. The same thing happened independently, far away in the east. So, at this time, there were two distinct and geographically separated groups of dogs. Let’s call them Ancient Western and Ancient Eastern. Around the Bronze Age, some of the Ancient Eastern dogs migrated westward alongside their human partners, separating from their homebound peers and creating the deep split in Larson’s tree. Along their travels, these migrants encountered the indigenous Ancient Western dogs, mated with them (doggy style, presumably), and effectively replaced them.

Today’s eastern dogs are the descendants of the Ancient Eastern ones. But today’s western dogs (and the Newgrange one) trace most of their ancestry to the Ancient Eastern migrants. Less than 10 percent comes from the Ancient Western dogs, which have since gone extinct.

This is a bold story for Larson to endorse, not least because he himself has come down hard on other papers suggesting that cows, sheep, or other species were domesticated twice. “Any claims for more than one need to be substantially backed up by a lot of evidence,” he says. “Pigs were clearly domesticated in Anatolia and in East Asia. Everything else is once.” Well, except maybe dogs.

*   *   *

Katie Salvi

Other canine genetics experts think that Larson’s barking up the wrong tree. “I’m somewhat underwhelmed, since it’s based on a single specimen,” says Bob Wayne from the University of California, Los Angeles. He buys that there’s a deep genetic division between modern dogs. But, it’s still possible that dogs were domesticated just once, creating a large, widespread, interbreeding population that only later resolved into two distinct lineages.

In 2013, Wayne’s team compared the mitochondrial genomes (small rings of DNA that sit outside the main set) of 126 modern dogs and wolves, and 18 fossils. They concluded that dogs were domesticated somewhere in Europe or western Siberia, between 18,800 and 32,100 years ago. And genes aside, “the density of fossils from Europe tells us something,” says Wayne. “There are many things that look like dogs, and nothing quite like that in east Asia.”

Peter Savolainen from the KTH Royal Institute of Technology in Stockholm disagrees. By comparing the full genomes of 58 modern wolves and dogs, his team has shown that dogs in southern China are the most genetically diverse in the world. They must have originated there around 33,000 years ago, he says, before a subset of them migrated west 18,000 years later.

That’s essentially the same story that Larson is telling. The key difference is that Savolainen doesn’t buy the existence of an independently domesticated group of western dogs. “That’s stretching the data very much,” he says. Those Ancient Western dogs might have just been wolves, he says. Or perhaps they were an even earlier group of migrants from the east. “I think the picture must seem a bit chaotic,” he says understatedly. “But for me, it’s pretty clear. It must have happened in southern East Asia. You can’t interpret it any other way.”

Except, you totally can. Wayne does (“I’m certainly less dogmatic than Peter,” he says). Adam Boyko from Cornell University does, too: after studying the genes of village dogs—free-ranging mutts that live near human settlements—he argued for a single domestication in Central Asia, somewhere near India or Nepal. And clearly, Larson does as well.

Larson adds that his gene-focused peers are ignoring one crucial line of evidence—bones. If dogs originated just once, there should be a neat gradient of fossils with the oldest ones at the center of domestication and the youngest ones far away from it. That’s not what we have. Instead, archaeologists have found 15,000-year-old dog fossils in western Europe, 12,500-year-old ones in east Asia, and nothing older than 8,000 years in between.

“If we’re wrong, then how on earth do you explain the archaeological data?” says Larson. “Did dogs jump from East Asia to Western Europe in a week, and then go all the way back 4,000 years later?” No. A dual domestication makes more sense. Mietje Genompré, an archaeologist from the Royal Belgian Institute of Natural Sciences, agrees that the bones support Larson’s idea. “For me, it’s very convincing,” she says.

But even Larson is hedging his bets. When I ask him how strong his evidence is, he says, “Like, put a number on it? If was being bold, I’d say it’s a 7 out of 10. We lack the smoking gun.”

Why is this is so hard? Of all the problems that scientists struggle with, why has the origin of dogs been such a bitch to solve?

For starters, the timing is hard to pin down because no one knows exactly how fast dog genomes change. That pace—the mutation rate—underpins a lot of genetic studies. It allows scientists to compare modern dogs and ask: How long ago must these lineages have diverged in order to build up this many differences in their genes? And since individual teams use mutation rate estimates that are wildly different, it’s no wonder they’ve arrive at conflicting answers.

Regardless of the exact date, it’s clear that over thousands of years, dogs have mated with each other, cross-bred with wolves, travelled over the world, and been deliberately bred by humans. The resulting ebb and flow of genes has turned their history into a muddy, turbid mess—the homogeneous soup that Larson envisages.

Wolves provide no clarity. Grey wolves used to live across the entire Northern Hemisphere, so they could have potentially been domesticated anywhere within that vast range (although North America is certainly out). What’s more, genetic studies tell us that no living group of wolves is more closely related to dogs than any other, which means that the wolves that originally gave rise to dogs are now extinct. Sequencing living wolves and dogs will never truly reveal their shrouded past; it’d be, as Larson says, like trying to solve a crime when the culprit isn’t even on the list of suspects.

“The only way to know for sure is to go back in time,” he adds.

*    *   *

Katie Salvi

The study informally known as the Big Dog Project was born of frustration. Back in 2011, Larson was working hard on the origin of domestic pigs, and became annoyed that scientists studying dogs were getting less rigorous papers in more prestigious journals, simply because their subjects were that much more charismatic and media-friendly. So he called up his longstanding collaborator Keith Dobney. “Through gritted teeth, I said: We’re fucking doing dogs. And he said: I’m in.”

Right from the start, the duo realized that studying living dogs would never settle the great domestication debate. The only way to do that was to sequence ancient DNA from fossil dogs and wolves, throughout their range and at different points in history. While other scientists were studying the soup of dog genetics by tasting the finished product, Larson would reach back in time to taste it at every step of its creation, allowing him to definitively reconstruct the entire recipe.

In recent decades, scientists have become increasingly successful at extracting and sequencing strands of DNA from fossils. This ancient DNA has done wonders for our understanding of our own evolution. It showed, for example, how Europe was colonized 40,000 years ago by hunter-gatherers moving up from Africa, then 8,000 years ago by Middle Eastern farmers, and 5,000 years ago by horse-riding herders from the Russian steppes. “Everyone in Europe today is a blend of those three populations,” says Larson, who hopes to parse the dog genome in the same way, by slicing it into its constituent ingredients.

Larson originally envisaged a small project—just him and Dobney analyzing a few fossils. But he got more funding, collaborators, and samples than he expected. “It just kind of metastasized out of all proportion,” he says. He and his colleagues would travel the world, drilling into fossils and carting chips of bone back to Oxford. They went to museums and private collections. (“There was a guy up in York who had a ton of stuff in his garage.”) They grabbed bones from archaeological sites.

The pieces of bone come back to a facility in Oxford called the Palaeo-BARN—the Palaeogenomics and Bioarchaeology Research Network. When I toured the facility with Larson, we wore white overalls, surgical masks, oversoles, and purple gloves, to keep our DNA (and that of our skin microbes) away from the precious fossil samples. Larson called them ‘spacesuits.’ I was thinking ‘thrift-store ninja.’

In one room, the team shoves pieces of bone into a machine that pounds it with a small ball bearing, turning solid shards into fine powder. They then send the powder through a gauntlet of chemicals and filters to pull out the DNA and get rid of everything else. The result is a tiny drop of liquid that contains the genetic essence of a long-dead dog or wolf. Larson’s freezer contains 1,500 such drops, and many more are on the way. “It’s truly fantastic the kind of data that he has gathered,” says Savolainen.

True to his roots in archaeology, Larson isn’t ignoring the bones. His team photographed the skulls of some 7,000 prehistoric dogs and wolves at 220 angles each, and rebuilt them in virtual space. They can use a technique called geometric morphometrics to see how different features on the skulls have evolved over time.

The two lines of evidence—DNA and bones—should either support or refute the double domestication idea. It will also help to clear some confusion over a few peculiar fossils, such as a 36,000 year old skull from Goyet cave in Belgium. Genompré thinks it’s a primitive dog. “It falls outside the variability of wolves: it’s smaller and the snout is different,” she says. Others say it’s too dissimilar to modern dogs. Wayne has suggested that it represents an aborted attempt at domestication—a line of dogs that didn’t contribute to modern populations and is now extinct.

Maybe the Goyet hound was part of Larson’s hypothetical Ancient Western group, domesticated shortly after modern humans arrived in Europe. Maybe it represented yet another separate flirtation with domestication. All of these options are on the table, and Larson thinks he has the data to tell them apart. “We can start putting numbers on the difference between dogs and wolves,” he says. “We can say this is what all the wolves at this time period look like; does the Goyet material fall within that realm, or does it look like dogs from later on?”

Larson hopes to have the first big answers within six to twelve months. “I think it’ll clearly show that some things can’t be right, and will narrow down the number of hypotheses,” says Boyko. “It may narrow it down to one but I’m not holding my breath on that.” Wayne is more optimistic. “Ancient DNA will provide much more definitive data than we had in the past,” he says. “[Larson] convinced everyone of that. He’s a great diplomat.”

Indeed, beyond accumulating DNA and virtual skulls, Larson’s greatest skill is in gathering collaborators. In 2013, he rounded up as many dog researchers as he could and flew them to Aberdeen, so he could get them talking. “I won’t say there was no tension,” he says. “You go into a room with someone who has written something that sort of implies you aren’t doing very good science… there will be tension. But it went away very quickly. And, frankly: alcohol.”

“Everyone was like: You know what? If I’m completely wrong and I have to eat crow on this, I don’t give a shit. I just want to know.”

The Big Search to Find Out Where Dogs Come From (New York Times)

An ancient canine skull at the Royal Belgian Institute of Natural Sciences. Scientists are still debating exactly when and where the ancient human-canine bond originated. ANDREW TESTA FOR THE NEW YORK TIMES


OXFORD, England — Before humans milked cows, herded goats or raised hogs, before they invented agriculture, or written language, before they had permanent homes, and most certainly before they had cats, they had dogs.

Or dogs had them, depending on how you view the human-canine arrangement. But scientists are still debating exactly when and where the ancient bond originated. And a large new study being run out of the University of Oxford here, with collaborators around the world, may soon provide some answers.

Scientists have come up with a broad picture of the origins of dogs. First off, researchers agree that they evolved from ancient wolves. Scientists once thought that some visionary hunter-gatherer nabbed a wolf puppy from its den one day and started raising tamer and tamer wolves, taking the first steps on the long road to leashes and flea collars. This is oversimplified, of course, but the essence of the idea is that people actively bred wolves to become dogs just the way they now breed dogs to be tiny or large, or to herd sheep.

The prevailing scientific opinion now, however, is that this origin story does not pass muster. Wolves are hard to tame, even as puppies, and many researchers find it much more plausible that dogs, in effect, invented themselves.

Arden Hulme-Beaman cutting a piece from an ancient skull for DNA testing at the Royal Belgian Institute of Natural Sciences in Brussels. ANDREW TESTA FOR THE NEW YORK TIMES

One reason for the conflicting theories, according to Greger Larson, a biologist in the archaeology department at the University of Oxford, is that dog genetics are a mess. In an interview at his office here in November, he noted that most dog breeds were invented in the 19th century during a period of dog obsession that he called “the giant whirlwind blender of the European crazy Victorian dog-breeding frenzy.”

That blender, as well as random breeding by dogs themselves, and interbreeding with wolves at different times over at least the last 15,000 years, created a “tomato soup” of dog genetics, for which the ingredients are very hard to identify, Dr. Larson said.

The way to find the recipe, Dr. Larson is convinced, is to create a large database of ancient DNA to add to the soup of modern canine genetics. And with a colleague, Keith Dobney at the University of Aberdeen, he has persuaded the Who’s Who of dog researchers to join a broad project, with about $2.5 million in funding from the Natural Environment Research Council in England and the European Research Council, to analyze ancient bones and their DNA.

Robert Wayne, an evolutionary biologist at U.C.L.A. who studies the origin of dogs and is part of the research, said, “There’s hardly a person working in canine genetics that’s not working on that project.”

A wolf on display at the Oxford Museum of Natural History. ANDREW TESTA FOR THE NEW YORK TIMES

That is something of a triumph, given the many competing theories in this field. “Almost every group has a different origination hypothesis,” he said.

But Dr. Larson has sold them all on the simple notion that the more data they have, the more cooperative the effort is, the better the answers are going to be. His personality has been crucial to promoting the team effort, said Dr. Wayne, who described Dr. Larson as “very outgoing, gregarious.” Also, Dr. Wayne added, “He has managed not to alienate anyone.”

Scientists at museums and universities who are part of the project are opening up their collections. So to gather data, Dr. Larson and his team at Oxford have traveled the world, collecting tiny samples of bone and measurements of teeth, jaws and occasionally nearly complete skulls from old and recent dogs, wolves and canids that could fall into either category. The collection phase is almost done, said Dr. Larson, who expects to end up with DNA from about 1,500 samples, and photographs and detailed measurements of several thousand.

Scientific papers will start to emerge this year from the work, some originating in Oxford, and some from other institutions, all the work of many collaborators.

Dr. Larson is gambling that the project will be able to determine whether the domestication process occurred closer to 15,000 or 30,000 years ago, and in what region it took place. That’s not quite the date, GPS location and name of the ancient hunter that some dog lovers might hope for.

But it would be a major achievement in the world of canine science, and a landmark in the analysis of ancient DNA to show evolution, migrations and descent, much as studies of ancient hominid DNA have shown how ancient humans populated the globe and interbred with Neanderthals.

And why care about the domestication of dogs, beyond the obsessive interest so many people have in their pets? The emergence of dogs may have been a watershed.

“Maybe dog domestication on some level kicks off this whole change in the way that humans are involved and responding to and interacting with their environment,” he added. “I don’t think that’s outlandish.”

Shepherding the Research

Dr. Larson is no stranger to widely varying points of view. He is an American, but recently became a British citizen as well. His parents are American and he visited the United States often as a child, but he was born in Bahrain and grew up in Turkey and Japan, places where his parents were teaching in schools on American military bases.

He graduated from Claremont McKenna College in California and received his Ph.D. at Oxford. In between college and graduate studies, he spent a year searching for the bed of an ancient river in Turkmenistan, and another couple of years setting up an environmental consulting office in Azerbaijan. He had an interest in science as an undergraduate, and some background from a college major in environment, economics and politics, but no set career plans. Instead, his career grew out of intense curiosity, a knack for making friends and a willingness to jump at an opportunity, like the time he managed to tag along on an archaeological dig.

He was staying in Ashgabat, Turkmenistan, and a local man who had helped him rent an old Soviet truck to explore the desert told him some Westerners were arriving to go on a dig, so he wangled his way onto one of the trucks.

“I think everybody there thought I was with somebody else,” Dr. Larson said.

By the time the group stopped to rest and someone asked him who he was, it was too late to question whether he really belonged. “I was a complete stowaway,” he said.

But he could move dirt and speak Russian, and he had some recently acquired expertise — in college drinking games — that he said was in great demand at night. By luck, he said, the researchers on the dig turned out to be “the great and the good of British neolithic archaeology.” One of them was Chris Gosden, the chairman of European Archaeology at Oxford, who later invited him to do a one-year master’s degree in archaeology at Oxford. That eventually led to a Ph.D. program after he spent some time in graduate school in the United States.

The current project began when he became fed up with the lack of ancient DNA evidence in papers about the origin of dogs. He called Dr. Dobney, of the University of Aberdeen in 2011, and said, “We’re doing dogs.”

After receiving the grant from the council in England, he and Dr. Dobney organized a conference in Aberdeen, Scotland, to gather as many people involved in researching dog origins as they could. His pitch to the group was that despite their different points of view, everyone was interested in the best possible evidence, no matter where it led.

“If we have to eat crow, we eat crow,” he said. “It’s science.”

A 32,000-Year-Old Skull

Mietje Germonpré, a paleontologist at the Royal Belgian Institute of Natural Sciences, is one of the many scientists participating in the dog project. She was one of a number of authors on a 2013 paper in Science that identified a skull about 32,000 years old from a Belgian cave in Goyet as an early dog. Dr. Wayne at U.C.L.A. was the senior author on the paper and Olaf Thalmann from the University of Turku in Finland was the first author.

It is typical of Dr. Larson’s dog project that although he disagreed with the findings of the paper, arguing that the evidence just wasn’t there to call the Goyet skull a dog, all of the authors of the paper are working on the larger project with him.

In November in Brussels, holding the priceless fossil, Dr. Germonpré pointed out the wide skull, crowded teeth and short snout of the ancient skull — all indicators to her that it was not a wolf.

“To me, it’s a dog,” she said. Studies of mitochondrial DNA, passed down from females only, also indicated the skull was not a wolf, according to the 2013 paper.

Dr. Germonpré said she thinks dogs were domesticated some time before this animal died, and she leans toward the idea that humans intentionally bred them from wolves.

She holds up another piece of evidence, a reconstruction of a 30,000-year-old canid skull found near Predmostí, in the Czech Republic, with a bone in its mouth. She reported in 2014 that this was a dog. And she says the bone is part of evidence the animal was buried with care. “We think it was deliberately put there,” she said.

But she recognizes these claims are controversial and is willing, like the rest of the world of canine science, to risk damage to the fossils themselves to get more information on not just the mitochondrial DNA but also the nuclear DNA.

To minimize that risk, she talked with Ardern Hulme-Beaman, a postdoctoral researcher with the Oxford team, about where to cut into it. He was nearing the end of months of traveling to Russia, Turkey, the United States and all over Europe to take samples of canid jaws and skulls.

He and Allowyn Evin, now with the National Center for Scientific Research in Montpelier, France, also took many photographs of each jaw and skull to do geometric morphometrics. Software processes detailed photographs from every angle into 3-D recreations that provide much more information on the shape of a bone than length and width measurements.

Dr. Germonpré and Dr. Hulme-Beaman agreed on a spot in the interior of the skull to cut. In the laboratory, he used a small electric drill with a cutting blade to remove a chunk the size of a bit of chopped walnut. An acrid, burning smell indicated that organic material was intact within the bone — a good sign for the potential retrieval of DNA.

Back in Oxford, researchers will attempt to use the most current techniques to get as much DNA as possible out of the sample. There is no stretch of code that says “wolf” or “dog,” any more than there is a single skull feature that defines a category. What geneticists try to establish is how different the DNA of one animal is from another. Adding ancient DNA gives many more points of reference over a long time span.

Dr. Larson hopes that he and his collaborators will be able to identify a section of DNA in some ancient wolves that was passed on to more doglike descendants and eventually to modern dogs. And he hopes they will be able to identify changes in the skulls or jaws of those wolves that show shifts to more doglike shapes, helping to narrow the origins of domestication.

The usual assumption about domestic animals is that the process of taming and breeding them happened once. But that’s not necessarily so. Dr. Larson and Dr. Dobney showed that pigs were domesticated twice, once in Anatolia and once in China. The same could be true of dogs.

Only the Beginning

Although the gathering of old bones is almost done, Dr. Larson is still negotiating with Chinese researchers for samples from that part of the world, which he says are necessary. But he hopes they will come.

If all goes well, said Dr. Larson, the project will publish a flagship paper from all of the participants describing their general findings. And over the next couple of years, researchers, all using the common data, will continue to publish separate findings.

Other large collaborative efforts are brewing, as well. Dr. Wayne, at U.C.L.A., said that a group in China was forming with the goal of sequencing 10,000 dog genomes. He and Dr. Larson are part of that group.

Last fall, Dr. Larson was becoming more excited with each new bit of data, but not yet ready to tip his hand about what conclusions the data may warrant, or how significant they will be.

But he is growing increasingly confident that they will find what they want, and come close to settling the thorny question of when and where the tearing power of a wolf jaw first gave way to the persuasive force of a nudge from a dog’s cold nose.

“I’m starting to drink my own Kool-Aid,” he said.

Study of ancient dogs in the Americas yields insights into human, dog migration (Science Daily)

Date: January 7, 2015

Source: University of Illinois at Urbana-Champaign

Summary: A new study suggests that dogs may have first successfully migrated to the Americas only about 10,000 years ago, thousands of years after the first human migrants crossed a land bridge from Siberia to North America.

New evidence suggests dogs arrived in the Americas only about 10,000 years ago. Some believe the ancient dogs looked a lot like present-day dingos. Credit: Angus McNab

A new study suggests that dogs may have first successfully migrated to the Americas only about 10,000 years ago, thousands of years after the first human migrants crossed a land bridge from Siberia to North America.

The study looked at the genetic characteristics of 84 individual dogs from more than a dozen sites in North and South America, and is the largest analysis so far of ancient dogs in the Americas. The findings appear in the Journal of Human Evolution.

Unlike their wild wolf predecessors, ancient dogs learned to tolerate human company and generally benefited from the association: They gained access to new food sources, enjoyed the safety of human encampments and, eventually, traveled the world with their two-legged masters. Dogs also were pressed into service as beasts of burden, and sometimes were served as food, particularly on special occasions.

Their 11,000- to 16,000-year association with humans makes dogs a promising subject for the study of ancient human behavior, including migratory behavior, said University of Illinois graduate student Kelsey Witt, who led the new analysis with anthropology professor Ripan Malhi.

“Dogs are one of the earliest organisms to have migrated with humans to every continent, and I think that says a lot about the relationship dogs have had with humans,” Witt said. “They can be a powerful tool when you’re looking at how human populations have moved around over time.”

Human remains are not always available for study “because living populations who are very connected to their ancestors in some cases may be opposed to the destructive nature of genetic analysis,” Witt said. Analysis of ancient dog remains is often permitted when analysis of human remains is not, she said.

Previous studies of ancient dogs in the Americas focused on the dogs’ mitochondrial DNA, which is easier to obtain from ancient remains than nuclear DNA and, unlike nuclear DNA, is inherited only from the mother. This means mitochondrial DNA offers researchers “an unbroken line of inheritance back to the past,” Witt said.

The new study also focused on mitochondrial DNA, but included a much larger sample of dogs than had been analyzed before.

Molecular anthropologist Brian Kemp of Washington State University provided new DNA samples from ancient dog remains found in Colorado and British Columbia, and the Illinois State Archaeological Survey (ISAS) provided 35 samples from a site in southern Illinois known as Janey B. Goode, near present-day St. Louis. The Janey B. Goode site is located near the ancient city Cahokia, the largest and first known metropolitan area in North America. Occupation of the Janey B. Goode site occurred between 1,400 and 1,000 years ago, the researchers said, while Cahokia was active from about 1,000 to 700 years ago.

Dozens of dogs were ceremonially buried at Janey B. Goode, suggesting that people there had a special reverence for dogs. While most of the dogs were buried individually, some were placed back-to-back in pairs.

In Cahokia, dog remains, sometimes burned, are occasionally found with food debris, suggesting that dogs were present and sometimes were consumed. Dog burials during this time period are uncommon.

As previous studies had done, the Illinois team analyzed genetic signals of diversity and relatedness in a special region (the hypervariable region) of the mitochondrial genome of ancient dogs from the Americas. University of Iowa anthropology professor Andrew Kitchen contributed significantly to this analysis.

The researchers found four never-before-seen genetic signatures in the new samples, suggesting greater ancient dog diversity in the Americas than previously thought. They also found unusually low genetic diversity in some dog populations, suggesting that humans in those regions may have engaged in dog breeding.

In some samples, the team found significant genetic similarities with American wolves, indicating that some of the dogs interbred with or were domesticated anew from American wolves.

But the most surprising finding had to do with the dogs’ arrival in the Americas, Witt said.

“Dog genetic diversity in the Americas may date back to only about 10,000 years ago,” she said.

“This also is about the same time as the oldest dog burial found in the Americas,” Malhi said. “This may not be a coincidence.”

The current study, of only a small part of the mitochondrial genome, likely provides an incomplete picture of ancient dog diversity in the Americas, Malhi said.

“The region of the mitochondrial genome sequenced may mask the true genetic diversity of indigenous dogs in the Americas, resulting in the younger date for dogs when compared with humans,” he said.

More studies of ancient dogs are in the works, the researchers said. Witt has already sequenced the full mitochondrial genomes of 20 ancient dogs, and more are planned to test this possibility, the researchers said.

Journal Reference:

  1. Kelsey E. Witt, Kathleen Judd, Andrew Kitchen, Colin Grier, Timothy A. Kohler, Scott G. Ortman, Brian M. Kemp, Ripan S. Malhi. DNA analysis of ancient dogs of the Americas: Identifying possible founding haplotypes and reconstructing population historiesJournal of Human Evolution, 2014; DOI: 10.1016/j.jhevol.2014.10.012

Dogs hear our words and how we say them (Science Daily)


November 26, 2014


Cell Press


When people hear another person talking to them, they respond not only to what is being said — those consonants and vowels strung together into words and sentences — but also to other features of that speech — the emotional tone and the speaker’s gender, for instance. Now, a report provides some of the first evidence of how dogs also differentiate and process those various components of human speech.


The results from this study support the idea that our canine companions are paying attention “not only to who we are and how we say things, but also to what we say,” authors say. Credit: © Uros Petrovic / Fotolia

When people hear another person talking to them, they respond not only to what is being said–those consonants and vowels strung together into words and sentences–but also to other features of that speech–the emotional tone and the speaker’s gender, for instance. Now, a report in the Cell Press journal Current Biology on November 26 provides some of the first evidence of how dogs also differentiate and process those various components of human speech.

“Although we cannot say how much or in what way dogs understand information in speech from our study, we can say that dogs react to both verbal and speaker-related information and that these components appear to be processed in different areas of the dog’s brain,” says Victoria Ratcliffe of the School of Psychology at the University of Sussex.

Previous studies showed that dogs have hemispheric biases–left brain versus right–when they process the vocalization sounds of other dogs. Ratcliffe and her supervisor David Reby say it was a logical next step to investigate whether dogs show similar biases in response to the information transmitted in human speech. They played speech from either side of the dog so that the sounds entered each of their ears at the same time and with the same amplitude.

“The input from each ear is mainly transmitted to the opposite hemisphere of the brain,” Ratcliffe explains. “If one hemisphere is more specialized in processing certain information in the sound, then that information is perceived as coming from the opposite ear.”

If the dog turned to its left, that showed that the information in the sound being played was heard more prominently by the left ear, suggesting that the right hemisphere is more specialized in processing that kind of information.

The researchers did observe general biases in dogs’ responses to particular aspects of human speech. When presented with familiar spoken commands in which the meaningful components of words were made more obvious, dogs showed a left-hemisphere processing bias, as indicated by turning to the right. When the intonation or speaker-related vocal cues were exaggerated instead, dogs showed a significant right-hemisphere bias.

“This is particularly interesting because our results suggest that the processing of speech components in the dog’s brain is divided between the two hemispheres in a way that is actually very similar to the way it is separated in the human brain,” Reby says.

Of course, it doesn’t mean that dogs actually understand everything that we humans might say or that they have a human-like ability of language–far from it. But, says Ratcliffe, these results support the idea that our canine companions are paying attention “not only to who we are and how we say things, but also to what we say.”

All of this should come as good news to many of us dog-loving humans, as we spend considerable time talking to our respective pups already. They might not always understand you, but they really are listening.

Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.

Journal Reference:

  1. Ratcliffe et al. Orienting asymmetries in dogs’ responses to different communicatory components of human speech. Current Biology, November 2014

Dogs can be pessimists, too (Science Daily)

Date: September 18, 2014

Source: University of Sydney

Summary: Dogs generally seem to be cheerful, happy-go-lucky characters, so you might expect that most would have an optimistic outlook on life. In fact some dogs are distinctly more pessimistic than others, new research shows.

English bulldog puppies. Some dogs are distinctly more pessimistic than others. In fact some dogs are distinctly more pessimistic than others, research from the University of Sydney shows. Credit: © B.Stefanov / Fotolia

Dogs generally seem to be cheerful, happy-go-lucky characters, so you might expect that most would have an optimistic outlook on life.

In fact some dogs are distinctly more pessimistic than others, research from the University of Sydney shows.

“This research is exciting because it measures positive and negative emotional states in dogs objectively and non-invasively. It offers researchers and dog owners an insight into the outlook of dogs and how that changes,” said Dr Melissa Starling, from the Faculty of Veterinary Science. Her PhD research findings are published in PLOS One today.

“Finding out as accurately as possible whether a particular dog is optimistic or pessimistic is particularly helpful in the context of working and service dogs and has important implications for animal welfare.”

Dogs were taught to associate two different sounds (two octaves apart) with whether they would get the preferred reward of milk or instead get the same amount of water. Once the dogs have learnt the discrimination task, they are presented with ‘ambiguous’ tones.

If dogs respond after ambiguous tones, it shows that they expect good things will happen to them, and they are called optimistic. They can show how optimistic they are by which tones they respond to. A very optimistic dog may even respond to tones that sound more like those played before water is offered.

“Of the dogs we tested we found more were optimistic than pessimistic but it is too early to say if that is true of the general dog population,” said Dr Starling.

However it does mean that both individuals and institutions (kennels, dog minders) can have a much more accurate insight into the emotional make-up of their dogs.

According to the research a dog with an optimistic personality expects more good things to happen, and less bad things. She will take risks and gain access to rewards. She is a dog that picks herself up when things don’t go her way, and tries again. Minor setbacks don’t bother her.

If your dog has a pessimistic personality, he expects less good things to happen and more bad things. This may make him cautious and risk averse. He may readily give up when things don’t go his way, because minor setbacks distress him. He may not be unhappy per se, but he is likely to be most content with the status quo and need some encouragement to try new things.

“Pessimistic dogs appeared to be much more stressed by failing a task than optimistic dogs. They would whine and pace and avoid repeating the task while the optimistic dogs would appear unfazed and continue,” said Dr Starling.

“This research could help working dog trainers select dogs best suited to working roles. If we knew how optimistic or pessimistic the best candidates for a working role are, we could test dogs’ optimism early and identify good candidates for training for that role. A pessimistic dog that avoids risks would be better as a guide dog while an optimistic, persistent dog would be more suited to detecting drugs or explosives.”

Dr Starling has been working with Assistance Dogs Australia, a charity organisation that provides service and companion dogs to people with disabilities, to investigate whether an optimism measure could aid in selecting suitable candidates for training.

The research not only suggests how personality may affect the way dogs see the world and how they behave but how positive or negative their current mood is.

“This research has the potential to completely remodel how animal welfare is assessed. If we know how optimistic or pessimistic an animal usually is, it’s possible to track changes in that optimism that will indicate when it is in a more positive or negative emotional state than usual,” said Dr Starling.

“The remarkable power of this is the opportunity to essentially ask a dog ‘How are you feeling?’ and get an answer. It could be used to monitor their welfare in any environment, to assess how effective enrichment activities might be in improving welfare, and pinpoint exactly what a dog finds emotionally distressing.”

Journal Reference:
  1. Melissa J. Starling, Nicholas Branson, Denis Cody, Timothy R. Starling, Paul D. McGreevy. Canine Sense and Sensibility: Tipping Points and Response Latency Variability as an Optimism Index in a Canine Judgement Bias Assessment. PLoS ONE, 2014; 9 (9): e107794 DOI:10.1371/journal.pone.0107794

Working with community dogs in Brazil (University of British Columbia)


Eugenia with cachorro

Under the supervision of UBC’s Nina von Keyserlingk, Eugenia Kwok, an undergraduate in the Faculty of Land and Food Systems Applied Animal Biology Program, applied for a MITACS undergraduate research grant to work this summer with Dr Carla Molento, Laboratório de Bem-estar Animal, Division of Agricultural Sciences, Universidade Federal do Parana. Eugenia will spend the summer working on a project entitled “Assessing the incidents of positive and negative behaviour and interaction between stray dogs and the community of Campo Largo, Brazil”. While these animals are collectively cared for by community members, community dogs seem to maintain casual relationships with people and lack true owners or guardians. Currently, very little is known about the daily activities of these stray dogs or the types of interactions that they encounter with humans and other dogs in their area.  Eugenia hopes that her work will contribute valuable information that can improve population management of these community dogs without jeopardizing animal welfare.

Domestication of Dogs May Explain Mammoth Kill Sites and the Success of Early Modern Humans (The Pennsylvania State University)

Pat Shipman and Barbara K. Kennedy

May 30, 2014

a dog's skullA fragment of a large bone, probably from a mammoth, Pat Shipman reports, was placed in this dog’s mouth shortly after death. This finding suggests the animal was according special mortuary treatment, perhaps acknowledging its role in mammoth hunting. The fossil comes from the site of Predmosti, in the Czech republic, and is about 27,000 years B.P. old. This object is one of three canid skulls from Predmosti that were identified as dogs based on analysis of their morphology. Photo credit: Anthropos Museum, Brno, the Czech Republic, courtesy of Mietje Germonpre.

29 May 2014 — A new analysis of European archaeological sites containing large numbers of dead mammoths and dwellings built with mammoth bones has led Penn State Professor Emerita Pat Shipman to formulate a new interpretation of how these sites were formed. She suggests that their abrupt appearance may have been due to early modern humans working with the earliest domestic dogs to kill the now-extinct mammoth — a now-extinct animal distantly related to the modern-day elephant. Shipman’s analysis also provides a way to test the predictions of her new hypothesis. Advance publication of her article “How do you kill 86 mammoths?” is available online throughQuaternary International.

Spectacular archaeological sites yielding stone tools and extraordinary numbers of dead mammoths — some containing the remains of hundreds of individuals — suddenly became common in central and eastern Eurasia between about 45,000 and 15,000 years ago, although mammoths previously had been hunted by humans and their extinct relatives and ancestors for at least a million years. Some of these mysterious sites have huts built of mammoth bones in complex, geometric patterns as well as piles of butchered mammoth bones.

“One of the greatest puzzles about these sites is how such large numbers of mammoths could have been killed with the weapons available during that time,” Shipman said. Many earlier studies of the age distribution of the mammoths at these sites found similarities with modern elephants killed by hunting or natural disasters, but Shipman’s new analysis of the earlier studies found that they lacked the statistical evaluations necessary for concluding with any certainty how these animals were killed.

Surprisingly, Shipman said, she found that “few of the mortality patterns from these mammoth deaths matched either those from natural deaths among modern elephants killed by droughts or by culling operations with modern weapons that kill entire family herds of modern elephants at once.” This discovery suggested to Shipman that a successful new technique for killing such large animals had been developed and its repeated use over time could explain the mysterious, massive collections of mammoth bones in Europe.

hand-drawn mapThese maps show the locations of collections of mammoth bones at the archaeological sites that Pat Shipman analyzed in her paper that will be published in the journal Quaternary International. Credit: Jeffrey Mathison. 

The key to Shipman’s new hypothesis is recent work by a team led by Mietje Germonpré of the Royal Belgian Institute of Natural Sciences, which has uncovered evidence that some of the large carnivores at these sites were early domesticated dogs, not wolves as generally had been assumed. Then, with this evidence as a clue, Shipman used information about how humans hunt with dogs to formulate a series of testable predictions about these mammoth sites.

“Dogs help hunters find prey faster and more often, and dogs also can surround a large animal and hold it in place by growling and charging while hunters move in. Both of these effects would increase hunting success,” Shipman said. “Furthermore, large dogs like those identified by Germonpré either can help carry the prey home or, by guarding the carcass from other carnivores, can make it possible for the hunters to camp at the kill sites.” Shipman said that these predictions already have been confirmed by other analyses. In addition, she said, “if hunters working with dogs catch more prey, have a higher intake of protein and fat, and have a lower expenditure of energy, their reproductive rate is likely to rise.”

Another unusual feature of these large mammoth kill sites is the presence of extraordinary numbers of other predators, particularly wolves and foxes. “Both dogs and wolves are very alert to the presence of other related carnivores — the canids — and they defend their territories and food fiercely,” Shipman explained. “If humans were working and living with domesticated dogs or even semi-domesticated wolves at these archaeological sites, we would expect to find the new focus on killing the wild wolves that we see there.”

bonesThe photo shows part of the very-high-density concentration of mammoth bones at the Krakow-Spadzista Street archaeological site. Credit line Piotr Wojtal.

Two other types of studies have yielded data that support Shipman’s hypothesis. Hervé Bocherens and Dorothée Drucker of the University of Tubingen in Germany, carried out an isotopic analysis of the ones of wolves and purported dogs from the Czech site of Predmostí. They found that the individuals identified as dogs had different diets from those identified as wolves, possibly indicating feeding by humans. Also, analysis of mitochondrial DNA by Olaf Thalmann of the University of Turku in Finland, and others, showed that the individuals identified as dogs have a distinctive genetic signature that is not known from any other canid. “Since mitochondrial DNA is carried only by females, this finding may indicate that these odd canids did not give rise to modern domesticated dogs and were simply a peculiar, extinct group of wolves,” Shipman said. “Alternatively, it may indicate that early humans did domesticate wolves into dogs or a doglike group, but the female canids interbred with wild wolf males and so the distinctive female mitochondrial DNA lineage was lost.”

As more information is gathered on fossil canids dated to between 45,000 and 15,000 years ago, Shipman’s hunting-dog hypothesis will be supported “if more of these distinctive doglike canids are found at large, long-term sites with unusually high numbers of dead mammoths and wolves; if the canids are consistently large, strong individuals; and if their diets differ from those of wolves,” Shipman said. “Dogs may indeed be man’s best friend.”

Genomes of Modern Dogs and Wolves Provide New Insights On Domestication (Science Daily)

Jan. 16, 2014 — Dogs and wolves evolved from a common ancestor between 9,000 and 34,000 years ago, before humans transitioned to agricultural societies, according to an analysis of modern dog and wolf genomes from areas of the world thought to be centers of dog domestication.

This chart depicts wolf and dog lineages as they diverge over time. (Credit: Freedma, et al / PLoS Genetics)

The study, published in PLoS Geneticson January 16, 2014, also shows that dogs are more closely related to each other than wolves, regardless of geographic origin. This suggests that part of the genetic overlap observed between some modern dogs and wolves is the result of interbreeding after dog domestication, not a direct line of descent from one group of wolves.

This reflects a more complicated history than the popular story that early farmers adopted a few docile, friendly wolves that later became our beloved, modern-day companions. Instead, the earliest dogs may have first lived among hunter-gatherer societies and adapted to agricultural life later.

“Dog domestication is more complex than we originally thought,” said John Novembre, associate professor in the Department of Human Genetics at the University of Chicago and a senior author on the study. “In this analysis we didn’t see clear evidence in favor of a multi-regional model, or a single origin from one of the living wolves that we sampled. It makes the field of dog domestication very intriguing going forward.”

The team generated the highest quality genome sequences to date from three gray wolves: one each from China, Croatia and Israel, representing three regions where dogs are believed to have originated. They also produced genomes for two dog breeds: a basenji, a breed which originates in central Africa, and a dingo from Australia, both areas that have been historically isolated from modern wolf populations. In addition to the wolves and dogs, they sequenced the genome of a golden jackal to serve as an “outgroup” representing earlier divergence.

Their analysis of the basenji and dingo genomes, plus a previously published boxer genome from Europe, showed that the dog breeds were most closely related to each other. Likewise, the three wolves from each geographic area were more closely related to each other than any of the dogs.

Novembre said this tells a different story than he and his colleagues anticipated. Instead of all three dogs being closely related to one of the wolf lineages, or each dog being related to its closest geographic counterpart (i.e. the basenji and Israeli wolf, or the dingo and Chinese wolf), they seem to have descended from an older, wolf-like ancestor common to both species.

“One possibility is there may have been other wolf lineages that these dogs diverged from that then went extinct,” he said. “So now when you ask which wolves are dogs most closely related to, it’s none of these three because these are wolves that diverged in the recent past. It’s something more ancient that isn’t well represented by today’s wolves.”

Accounting for gene flow between dogs and wolves after domestication was a crucial step in the analyses. According to Adam Freedman, a postdoctoral fellow at the University of California, Los Angeles (UCLA) and the lead author on the study, gene flow across canid species appears more pervasive than previously thought.

“If you don’t explicitly consider such exchanges, these admixture events get confounded with shared ancestry,” he said. “We also found evidence for genetic exchange between wolves and jackals. The picture emerging from our analyses is that these exchanges may play an important role in shaping the diversification of canid species.”

Domestication apparently occurred with significant bottlenecks in the historical population sizes of both early dogs and wolves. Freedman and his colleagues were able to infer historical sizes of dog and wolf populations by analyzing genome-wide patterns of variation, and show that dogs suffered a 16-fold reduction in population size as they diverged from wolves. Wolves also experienced a sharp drop in population size soon after their divergence from dogs, implying that diversity among both animals’ common ancestors was larger than represented by modern wolves.

The researchers also found differences across dog breeds and wolves in the number of amylase (AMY2B) genes that help digest starch. Recent studies have suggested that this gene was critical to domestication, allowing early dogs living near humans to adapt to an agricultural diet. But the research team surveyed genetic data from 12 additional dog breeds and saw that while most dog breeds had high numbers of amylase genes, those not associated with agrarian societies, like the Siberian husky and dingo, did not. They also saw evidence of this gene family in wolves, meaning that it didn’t develop exclusively in dogs after the two species diverged, and may have expanded more recently after domestication.

Novembre said that overall, the study paints a complex picture of early domestication.

“We’re trying to get every thread of evidence we can to reconstruct the past,” he said. “We use genetics to reconstruct the history of population sizes, relationships among populations and the gene flow that occurred. So now we have a much more detailed picture than existed before, and it’s a somewhat surprising picture.”

Journal Reference:

  1. Adam H. Freedman, Ilan Gronau, Rena M. Schweizer, Diego Ortega-Del Vecchyo, Eunjung Han, Pedro M. Silva, Marco Galaverni, Zhenxin Fan, Peter Marx, Belen Lorente-Galdos, Holly Beale, Oscar Ramirez, Farhad Hormozdiari, Can Alkan, Carles Vilà, Kevin Squire, Eli Geffen, Josip Kusak, Adam R. Boyko, Heidi G. Parker, Clarence Lee, Vasisht Tadigotla, Adam Siepel, Carlos D. Bustamante, Timothy T. Harkins, Stanley F. Nelson, Elaine A. Ostrander, Tomas Marques-Bonet, Robert K. Wayne, John Novembre. Genome Sequencing Highlights the Dynamic Early History of DogsPLoS Genetics, 2014; 10 (1): e1004016 DOI:10.1371/journal.pgen.1004016

Mais sobre os beagles e o Instituto Royal

JC e-mail 4855, de 13 de novembro de 2013

SBCAL/COBEA lamenta fechamento do Instituto Royal em manifesto

Assinado pela diretoria, texto destaca a preocupação da comunidade científica com o bem-estar dos animais

A diretoria da Sociedade Brasileira de Ciência em Animais de Laboratório (SBCAL) e do Colégio Brasileiro de Experimentação Animal (Cobea) divulgou um manifesto lamentando a fechamento definitivo do Instituto Royal e repudiando a invasão e roubo de cães. O texto destaca a preocupação da associação com o bem-estar dos animais usados em laboratório.

Veja o documento na íntegra:

Manifesto da Sociedade Brasileira de Ciência em Animais de Laboratório
A SBCAL lamenta profundamente a invasão e o roubo dos cães ocorridos no Instituto Royal. Este Instituto era uma unidade experimental de referência em nosso País, tanto por sua credibilidade quanto por sua ética no cuidado com os animais.

O Instituto Royal contribuiu de forma significativa para a produção de novos medicamentos para a indústria farmacêutica nacional. É importante deixar claro que a invasão foi realizada por ativistas contrários ao uso científico de animais. A denúncia de maus tratos foi um pretexto criado para incentivar a invasão e o roubo dos animais. Não houve provas de maus tratos.

O Instituto Royal sempre teve preocupação com o bem-estar de todos seus animais, pois esta é uma obrigação ética que temos com eles além de ser fundamental para a obtenção de resultados fidedignos. A certificação dos medicamentos que estavam sendo testados no instituto Royal, para sua posterior produção no Brasil foi interrompida. Com isso muitas doenças como o câncer continuarão dependente da importação destes medicamentos, que são caros e nem sempre ao alcance das parcelas mais necessitadas da nossa sociedade.

A SBCAL é a favor do diálogo e repudia qualquer forma de violência contra os animais, contra pessoas e contra o patrimônio de qualquer entidade. A ciência brasileira se encontra ameaçada com este movimento que quer impor a sua verdade por meio da violência e não pelo diálogo.

Nós apoiamos o desenvolvimento da ciência com o uso de animais desde que pautada em critérios éticos e com cuidado e manejo que preservem, ao máximo, o bem estar destas espécies. Entendemos que a sociedade tem se preocupado com os animais usados em pesquisa cientifica e podemos assegurar que esta é, também, uma preocupação da SBCAL.

Enquanto não houver métodos substitutivos ao uso de animais, temos que cuidar deles da melhor forma possível respeitando seu comportamento e suas necessidades. Está é uma atitude ética em relação aos animais e aos seres humanos que neles depositam a esperança do desenvolvimento de tratamentos para as enfermidades humanas e animais.

A SBCAL fica a disposição para esclarecer qualquer dúvida quanto a questões relacionadas ao manejo e bem-estar de animais usados na pesquisa científica.


* * *

JC e-mail 4856, de 14 de novembro de 2013

Instituto dos beagles sofre novo ataque

Grupo de encapuzados entrou nas instalações, amarrou vigias e soltou roedores de laboratório em São Roque (SP)

O Instituto Royal, em São Roque (a 66 Km de São Paulo), foi novamente atacado na madrugada de ontem. Cerca de 300 roedores que ainda restavam no local foram levados ou soltos na região.

A ação acontece menos de um mês após a primeira invasão, em 18 de outubro, quando 178 cães da raça beagle foram resgatados por cerca de cem ativistas.

Na semana passada, a direção do Royal anunciou o encerramento de suas atividade na unidade paulista.

A alegação foi a falta de segurança e os prejuízos “irreparáveis”, após o vandalismo que prejudicou o andamento de pesquisas diversas, inclusive com medicamentos.

O ataque de ontem começou por volta das 3h, segundo a polícia. Pelo menos 40 pessoas encapuzadas, algumas delas com foices, facas e alicates, renderam e amararam três seguranças que estavam na instalação.

Em nota, o laboratório informou que materiais que restavam no local, como cadeiras, prateleiras e microscópios, foram destruídos.

Veículos do instituto e de um dos seguranças também foram danificados.

Os vigias declararam em boletim de ocorrência que foram agredidos e passaram por exame de corpo de delito. A carteira de um deles foi levada pelos vândalos.

A delegacia de São Roque investiga o caso e já requisitou as imagens de câmeras de segurança do prédio.

Em paredes do instituto foram pichadas as frases: “Assassinos. A mão de Deus vai cair sobre vocês” e “Aliança de Libertação Animal”.

Ativistas acusam o laboratório de maus-tratos contra os animais, o que a instituição sempre negou.

Um grupo intitulado “Coletivo Armageddon Black” compartilhou fotos que seriam do momento da invasão ao Royal em sua página em uma rede social.

Nas imagens postadas, homens e mulheres encapuzados carregam caixas cheias de ratos brancos e posam com uma faca, um machado e um martelo nas mãos.

O instituto afirma que aguardava definição de órgãos competentes para encaminhar os animais que restavam no local para uma destinação correta.

Ativistas chegaram a declarar em páginas da internet que queriam ficar com os bichos e que iriam buscá-los.

“Lamentamos que a onda de violência física e moral contra os animais e os profissionais que prestam serviço ao instituto, apoiada sistematicamente por políticos e celebridades, ainda persista”, informou nota da instituição divulgada ontem.

(Jairo Marques/ Folha de S.Paulo)

Matéria do Estadão sobre o ataque:
Após render vigias, grupo invade Royal de novo e leva roedores,apos-render-vigias-grupo-invade-royal-de-novo-e-leva-roedores-,1096460,0.htm