Arquivo da tag: Meteorologia

The Weather Man (Stanford Magazine)

Daniel Swain studies extreme floods. And droughts. And wildfires. Then he explains them to the rest of us.

February 6, 2024

    

An illustration of Daniel Swain walking through the mountains and clouds.

By Tracie White

Illustrations by Tim O’Brien

7:00 a.m., 45 degrees F

The moment Daniel Swain wakes up, he gets whipped about by hurricane-force winds. “A Category 5, literally overnight, hits Acapulco,” says the 34-year-old climate scientist and self-described weather geek, who gets battered daily by the onslaught of catastrophic weather headlines: wildfires, megafloods, haboobs (an intense dust storm), atmospheric rivers, bomb cyclones. Everyone’s asking: Did climate change cause these disasters? And, more and more, they want Swain to answer.

Swain, PhD ’16, rolls over in bed in Boulder, Colo., and checks his cell phone for emails. Then, retainer still in his mouth, he calls back the first reporter of the day. It’s October 25, and Isabella Kwai at the New York Times wants to know whether climate change is responsible for the record-breaking speed and ferocity of Hurricane Otis, which rapidly intensified and made landfall in Acapulco as the eastern Pacific’s strongest hurricane on record. It caught everyone off guard. Swain posted on X (formerly known as Twitter) just hours before the storm hit: “A tropical cyclone undergoing explosive intensification unexpectedly on final approach to a major urban area . . . is up there on list of nightmare weather scenarios becoming more likely in a warming #climate.”

Swain is simultaneously 1,600 miles away from the tempest and at the eye of the storm. His ability to explain science to the masses—think the Carl Sagan of weather—has made him one of the media’s go-to climate experts. He’s a staff research scientist at UCLA’s Institute of the Environment and Sustainability who spends more than 1,100 hours each year on public-facing climate and weather communication, explaining whether (often, yes) and how climate change is raising the number and exacer­bating the viciousness of weather disasters. “I’m a physical scientist, but I not only study how the physics and thermo­dynamics of weather evolve but how they affect people,” says Swain. “I lead investigations into how extreme events like floods and droughts and wildfires are changing in a warming climate, and what we might do about it.”

He translates that science to everyday people, even as the number of weather-disaster headlines grows each year. “To be quite honest, it’s nerve-racking,” says Swain. “There’s such a demand. But there’s a climate emergency, and we need climate scientists to talk to the world about it.”

No bells, no whistles. No fancy clothes, makeup, or vitriolic speech. Sometimes he doesn’t even shave for the camera. Just a calm, matter-of-fact voice talking about science on the radio, online, on TV. In 2023, he gave nearly 300 media interviews—sometimes at midnight or in his car. The New York Times, CNN, and BBC keep him on speed dial. Social media is Swain’s home base. His Weather West blog reaches millions. His weekly Weather West “office hours” on YouTube are public and interactive, doubling as de facto press conferences. His tweets reach 40 million people per year. “I don’t think that he appreciates fully how influential he is of the public understanding of weather events, certainly in California but increasingly around the world,” says Stanford professor of earth system science Noah Diffenbaugh, ’96, MS ’97, Swain’s doctoral adviser and mentor. “He’s such a recognizable presence in newspapers and radio and television. Daniel’s the only climate scientist I know who’s been able to do that.”

Illustration of Daniel Swain's reflection in a puddle.

There’s no established job description for climate communicator—what Swain calls himself—and no traditional source of funding. He’s not particularly a high-energy person, nor is he naturally gregarious; in fact, he has a chronic medical condition that often saps his energy. But his work is needed, he says. “Climate change is an increasingly big part of what’s driving weather extremes today,” Swain says. “I connect the dots between the two. There’s a lot of misunderstanding about how a warming climate affects day-to-day variations in weather, but my goal is to push public perception toward what the science actually says.” So when reporters call him, he does his best to call them back. 

Decoration

7:30 a.m., winds at 5 mph from the east northeast

Swain finishes the phone call with the Times reporter and schedules a Zoom interview with Reuters for noon. Then he brushes his teeth. He’s used to a barrage of requests when there’s a catastrophic weather event. Take August 2020, when, over three days, California experienced 14,000 lightning strikes from “dry” thunderstorms. More than 650 reported wildfires followed, eventually turning the skies over San Francisco a dystopian orange. “In a matter of weeks, I did more than 100 interviews with television, radio, and newspaper outlets, and walked a social media audience of millions through the disaster unfolding in their own backyards,” he wrote in a recent essay for Nature.

Swain’s desire to understand the physics of weather stretches back to his preschool years. In 1993, his family moved from San Francisco across the Golden Gate Bridge to San Rafael, and the 4-year-old found himself wondering where all that Bay City fog had gone. Two years later, Swain spent the first big storm of his life under his parents’ bed. He lay listening to screeching 100 mile-per-hour winds around his family’s home, perched on a ridge east of Mount Tamalpais. But he was more excited than scared. The huge winter storm of 1995 that blew northward from San Francisco and destroyed the historic Conservatory of Flowers just got 6-year-old Swain wired.

‘Climate change is an increasingly big part of what’s driving weather extremes today. I connect the dots between the two.’

“To this day, it’s the strongest winds I’ve ever experienced,” he says. “It sent a wind tunnel through our house.” It broke windows. Shards of glass embedded in one of his little brother’s stuffies, which was sitting in an empty bedroom. “I remember being fascinated,” he says. So naturally, when he got a little older, he put a weather station on top of that house. And then, in high school, he launched his Weather West blog. “It was read by about 10 people,” Swain says, laughing. “I was a weather geek. It didn’t exactly make me popular.” Two decades, 550 posts, and 2 million readers later, well, who’s popular now?

Swain graduated from UC Davis with a bachelor’s degree in atmospheric science. He knew then that something big was happening on the weather front, and he wanted to understand how climate change was influencing the daily forecast. So at Stanford, he studied earth system science and set about using physics to understand the causes of changing North Pacific climate extremes. “From the beginning, Daniel had a clear sense of wanting to show how climate change was affecting the weather conditions that matter for people,” says Diffenbaugh. “A lot of that is extreme weather.” Swain focused on the causes of persistent patterns in the atmosphere—long periods of drought or exceptionally rainy winters—and how climate change might be exacerbating them.

The first extreme weather event he studied was the record-setting California drought that began in 2012. He caught the attention of both the media and the scientific community after he coined the term Ridiculously Resilient Ridge, referring to a persistent ridge of high pressure caused by unusual oceanic warmth in the western tropical Pacific Ocean. That ridge was blocking weather fronts from bringing rain into California. The term was initially tongue-in-cheek. Today the Ridiculously Resilient Ridge (aka RRR or Triple R) has a Wikipedia page.

“One day, I was sitting in my car, waiting to pick up one of my kids, reading the news on my phone,” says Diffenbaugh. “And I saw this article in the Economist about the drought. It mentioned this Ridiculously Resilient Ridge. I thought, ‘Oh, wow, that’s interesting. That’s quite a branding success.’ I click on the page and there’s a picture of Daniel Swain.”

Diffenbaugh recommended that Swain write a scientific paper about the Ridiculously Resilient Ridge, and Swain did, in 2014. By then, the phrase was all over the internet. “Journalists started calling while I was still at Stanford,” says Swain. “I gave into it initially, and the demand just kept growing from there.”

Decoration

11:45 a.m., precipitation 0 inches

Swain’s long, lanky frame is seated ramrod straight in front of his computer screen, scrolling for the latest updates about Hurricane Otis. At noon, he signs in to Zoom and starts answering questions again.

Reuters: “Hurricane Otis wasn’t in the forecast until about six to 10 hours before it occurred. What would you say were the factors that played into its fierce intensification?”

Swain: “Tropical cyclones, or hurricanes, require a few different ingredients. I think the most unusual one was the warmth of water temperature in the Pacific Ocean off the west coast of Mexico. It’s much higher than usual. This provided a lot of extra potential intensity to this storm. We expect to see increases in intensification of storms like this in a warming climate.”

Swain’s dog, Luna, bored by the topic, snores softly. She’s asleep just behind him, next to a bookshelf filled with weather disaster titles: The Terror by Dan Simmons; The Water Will Come by Jeff Goodell; Fire Weather by John Vaillant. And the deceptively hopeful-sounding Paradise by Lizzie Johnson, which tells the story of the 2018 Camp Fire that burned the town of Paradise, Calif., to the ground. Swain was interviewed by Johnson for the book. The day of the fire, he found himself glued to the comment section of his blog, warning anyone who asked about evacuation to get out.

“During the Camp Fire, people were commenting, ‘I’m afraid. What should we do? Do we stay or do we go?’ Literally life or death,” he says. He wrote them back: “There is a huge fire coming toward you very fast. Leave now.” As they fled, they sent him progressively more horrifying images of burning homes and trees like huge, flaming matchsticks. “This makes me extremely uncomfortable—that I was their best bet for help,” says Swain.

Swain doesn’t socialize much. He doesn’t have time. His world revolves around his home life, his work, and taking care of his health. He has posted online about his chronic health condition, Ehlers-Danlos syndrome, a heritable connective tissue disease that, for him, results in fatigue, gastrointestinal problems, and injuries—he can partially dislocate a wrist mopping the kitchen floor. He works to keep his health condition under control when he has down time, traveling to specialists in Utah, taking medications and supplements, and being cautious about any physical activity. When he hikes in the Colorado Rocky Mountains, he’s careful and tries to keep his wobbly ankles from giving out. Doctors don’t have a full understanding of EDS. So, Swain researches his illness himself, much like he does climate science, constantly looking for and sifting through new data, analyzing it, and sometimes sharing what he discovers online with the public. “If it’s this difficult to parse even as a professional scientist and science communicator, I can only imagine how challenging this task is for most other folks struggling with complex/chronic illnesses,” he wrote on Twitter. 

‘“There is a huge fire coming toward you very fast. Leave now.” This makes me extremely uncomfortable—that I was their best bet for help. ’

It helps if he can exert some control over his own schedule to minimize fatigue. The virtual world has helped him do that. He mostly works from a small, extra bedroom in an aging rental home perched at an elevation of 5,400 feet in Boulder, where he lives with his partner, Jilmarie Stephens, a research scientist at the University of Colorado Boulder.

When Swain was hired at UCLA in 2018, Peter Kareiva, the then director of the Institute of the Environment and Sustainability, supported a nontraditional career path that would allow Swain to split his time between research and climate communication, with the proviso that he find grants to fund much of his work. That same year, Swain was invited to join a group at the National Center for Atmospheric Research (NCAR) located in Boulder, which has two labs located at the base of the Rocky Mountains. 

“Daniel had a very clear vision about how he wanted to contribute to science and the world, using social media and his website,” says Kareiva, a research professor at UCLA. “We will not solve climate change without a movement, and communication and social media are key to that. Most science papers are never even read. What we do as scientists only matters if it has an impact on the world. We need at least 100 more Daniels.”

And yet financial support for this type of work is never assured. In a recent essay in Nature, Swain writes about what he says is a desperate need for more institutions to fund climate communication by scientists. “Having a foot firmly planted in both research and public-engagement worlds has been crucial,” he writes. “Even as I write this, it’s unclear whether there will be funding to extend my present role beyond the next six months.”

Decoration

4:00 p.m., 67 degrees F

“Ready?” says the NBC reporter on the computer screen. “Can we just have you count to 10, please?”

“Yep. One, two, three, four, five, six, seven, eight, nine, 10,” Swain says.

“Walk me through in a really concise way why we saw this tropical storm, literally overnight, turn into a Category 5 hurricane, when it comes to climate change,” the reporter says.

“So, as the Earth warms, not only does the atmosphere warm or air temperatures increase, but the oceans are warming as well. And because warm tropical oceans are hurricane fuel, the maximum potential intensity of hurricanes is set by how warm the oceans are,” Swain says.

An hour later, Swain lets Luna out and prepares for the second half of his day: He’ll spend the next five hours on a paper for a science journal. It’s a review of research on weather whiplash in California—the phenomenon of rapid swings between extremes, such as the 2023 floods that came on the heels of a severe drought. Using atmospheric modeling, Swain predicted in a 2018 Nature Climate Change study that there would be a 25 percent to 100 percent increase in extreme dry-to-wet precipitation events in the years ahead. Recent weather events support that hypothesis, and Swain’s follow-up research analyzes the ways those events are seriously stressing California’s water storage and flood control infrastructure.

“What’s remarkable about this summer is that the record-shattering heat has occurred not only over land but also in the oceans,” Swain explained in an interview with Katie Couric on YouTube in August, “like the hot tub [temperature] water in certain parts of the shallow coastal regions off the Gulf of Mexico.” In a warming climate, the atmosphere acts as a kitchen sponge, he explains later. It soaks up water but also wrings it out. The more rapid the evaporation, the more intense the 
precipitation. When it rains, there are heavier downpours and more extreme flood events.

‘What we do as scientists only matters if it has an impact on the world. We need at least 100 more Daniels.’

“It really comes down to thermo­dynamics,” he says. The increasing temperatures caused by greenhouse gases lead to more droughts, but they also cause more intense precipitation. The atmosphere is thirstier, so it takes more water from the land and from plants. The sponge holds more water vapor. That’s why California is experiencing these wild alternations, he says, from extremely dry to extremely wet. “It explains the role climate change plays in turning a tropical storm overnight into hurricane forces,” he says.

Decoration

October 26, expected high of 45 degrees F

In 2023, things got “ludicrously crazy” for both Swain and the world. It was the hottest year in recorded history. Summer temperatures broke records worldwide. The National Oceanic and Atmospheric Administration reported 28 confirmed weather/climate disaster events with losses exceeding $1 billion—among them a drought, four flooding events, 19 severe storm events, two tropical cyclones, and a killer wildfire. Overall, catastrophic weather events resulted in the deaths of 492 people in the United States. “Next year may well be worse than that,” Swain says. “It’s mind-blowing when you think about that.” 

“There have always been floods and wildfires, hurricanes and storms,” Swain continues. “It’s just that now, climate change plays a role in most weather disasters”—pumped-up storms, more intense and longer droughts and wildfire seasons, and heavier rains and flooding. It also plays a role in our ability to manage those disasters, Swain says. In a 2023 paper he published in Communications Earth & Environment, for example, he provides evidence that climate change is shifting the ideal timing of prescribed burns (which help mitigate wildfire risk) from spring and autumn to winter.

The day after Hurricane Otis strikes, Swain’s schedule has calmed down, so he takes time to make the short drive from his home up to the NCAR Mesa Lab, situated in a majestic spot where the Rocky Mountains meet the plains. Sometimes he’ll sit in his Hyundai in the parking lot, looking out his windshield at the movements of the clouds while doing media interviews on his cell phone. Today he scrolls through weather news updates on the aftermath of Hurricane Otis, keeping informed for the next interview that pops up, or his next blog post. In total, 52 people will be reported dead due to the disaster. The hurricane destroyed homes and hotels, high-rises and hospitals. Swain’s name will appear in at least a dozen stories on Hurricane Otis, including one by David Wallace-Wells, an opinion writer for the New York Times, columnist for the New York Times Magazine, and bestselling author of The Uninhabitable Earth: Life After Warming. “It’s easy to get pulled into overly dramatic ways of looking at where the world is going,” says Wallace-Wells, who routinely listens to Swain’s office hours and considers him a key source when he needs information on weather events. “Daniel helps people know how we can better calibrate those fears with the use of scientific rigor. He’s incredibly valuable.”

From the parking lot in the mountains, Swain often watches the weather that blows across the wide-open plains that stretch for hundreds of miles, all the way to the Mississippi River. He never tires of examining weather in real time, learning from it. He studies the interplay between the weather and the clouds at this spot where storms continually roll in and roll out.

“After all these years,” he says, “I’m still a weather geek.” 


Tracie White is a senior writer at Stanford. Email her at traciew@stanford.edu.

Atividade humana coloca sistemas de suporte à vida na Terra em risco, diz estudo (Folha de S.Paulo)

www1.folha.uol.com.br

Riham Alkousaa, David Stanway

14 de setembro de 2023

Mundo já ultrapassou 6 das 9 fronteiras planetárias, como são chamados os limites seguros para a existência no planeta


Os sistemas de suporte à vida na Terra enfrentam riscos e incertezas maiores do que nunca, e a maioria dos principais limites de segurança já foram ultrapassados como resultado de intervenções humanas em todo o planeta, apontou estudo científico divulgado nesta quarta-feira (13).

Em uma espécie de “check-up de saúde” do planeta publicado na revista Science Advances, uma equipe internacional de 29 especialistas concluiu que a Terra atualmente está “bem fora do espaço operacional seguro para a humanidade” devido à atividade humana.

O estudo, que amplia um relatório de 2015, afirma que o mundo já ultrapassou 6 das 9 “fronteiras planetárias” —limites seguros para a vida humana em áreas como a integridade da biosfera, mudanças climáticas e a utilização e disponibilidade de água doce.

Ao todo, afirma o estudo, 8 das 9 fronteiras estão sob pressão maior do que a verificada na avaliação de 2015, aumentando o risco de mudanças dramáticas nas condições de vida da Terra. A camada de ozônio é o único dos quesitos a melhorar.

“Não sabemos se podemos prosperar sob grandes e dramáticas alterações das nossas condições”, disse a principal autora do estudo, Katherine Richardson, da Universidade de Copenhague.

Os autores afirmam que cruzar as fronteiras não representa um ponto de inflexão no qual a civilização humana simplesmente entrará em colapso, mas pode trazer mudanças irreversíveis nos sistemas de suporte à vida na Terra.

“Podemos pensar na Terra como um corpo humano e nos limites planetários como a pressão sanguínea. Acima de 120/80 [na medição da pressão sanguínea] não necessariamente indica um ataque cardíaco, mas aumenta o risco”, disse Richardson.

Os cientistas soaram o alarme sobre o aumento do desmatamento, o consumo excessivo de plantas como combustível, a proliferação de produtos como o plástico, organismos geneticamente modificados e produtos químicos sintéticos.

Dos nove limites avaliados, apenas a acidificação dos oceanos, a destruição da camada de ozônio e a poluição atmosférica —principalmente com partículas semelhantes à fuligem— foram consideradas ainda dentro de limites seguros. O teto da acidificação dos oceanos, no entanto, está perto de ser ultrapassado.

A concentração atmosférica de dióxido de carbono, o principal gás causador do efeito estufa, aumentou para cerca de 417 ppm (partes por milhão), significativamente superior ao nível seguro de 350 ppm.

Estima-se também que a atual taxa de extinção de espécies seja pelo menos dezenas de vezes mais rápida do que a taxa média dos últimos 10 milhões de anos, o que significa que o planeta já ultrapassou a fronteira segura para a diversidade genética.

“Na minha carreira nunca me baseei em tantas evidências como hoje”, disse Johan Rockström, coautor do estudo e diretor do Instituto Potsdam para Pesquisa de Impacto Climático.

Como é calculada chance de chuva que serviços de meteorologia divulgam (Folha de SP/BBC)

www1.folha.uol.com.br

Quanto mais específicos e precisos forem os dados atmosféricos coletados na área observada, mais precisa será a probabilidade.

Rafael Abuchaibe

29 de abril de 2023


Se você é daqueles que não sai de casa sem antes conferir a previsão do tempo, certamente já se perguntou por que a porcentagem de chuva oferecida pela maioria dos serviços de meteorologia nem sempre corresponde ao que você vê pela janela.

“Porque representa as chances de chover na sua cidade“, alguém já deve ter respondido, quase surpreso com o quão básica parecia ser a resposta à sua pergunta:

“E as estatísticas nunca são 100% precisas.”

Outros, tendo indagado um pouco mais sobre o assunto, podem ter dito que o que o percentual representa é a área do território em que vai chover durante um determinado período de tempo (por exemplo, “das 9h às 12h”).

E para colocar mais lenha na fogueira, você deve ter visto alguns vídeos do TikTok explicando que o que a porcentagem reflete é a certeza dos meteorologistas de que vai chover em uma determinada área, com base em medições de fatores como temperatura, pressão atmosférica e velocidade do vento.

Diante de explicações tão variadas e distintas para algo que parece ser tão simples, a BBC News Mundo, serviço de notícias em espanhol da BBC, resolveu buscar uma explicação mais exata para o que aquele número representa —e percebeu que, de certa forma, todo mundo tem razão.

Probabilidade de precipitação

Para poder estabelecer o que essa porcentagem realmente significa, vamos começar revisando a definição dada pelo Serviço Meteorológico dos EUA:

“A probabilidade de precipitação representa simplesmente a probabilidade estatística de que haja 0,01 polegadas [0,25 mm] ou mais de precipitação [seja chuva, neve ou granizo] em uma determinada área dentro do período de tempo especificado.”

A porcentagem leva em consideração diferentes fatores para expressar em um valor estatístico a probabilidade de ocorrer precipitação em um determinado ponto.

“Vejamos um exemplo do que essa probabilidade significa”, diz o serviço meteorológico em sua definição.

“Se a previsão para um determinado distrito diz que há 40% de probabilidade de chuva para esta tarde, isso significa que há 40% de chance de chover em algum lugar do distrito entre meio-dia e 18h”, acrescenta.

Com base nessa definição, quanto mais específicos e precisos forem os dados atmosféricos coletados na área observada, mais preciso será o percentual de probabilidade.

Isso explica por que os dados fornecidos por diferentes serviços meteorológicos variam (embora não muito).

Duas medições, mesmo resultado

Para poder fazer uma previsão, um analista meteorológico multiplica dois fatores: a certeza que tem de que um sistema de precipitação vai se formar ou se aproximar, calculado por meio de medições atmosféricas, pela extensão —área física— que se espera que tal precipitação tenha no território analisado.

A esse resultado, basta mover duas casas decimais, e a probabilidade de precipitação é obtida.

Isso indica que é possível chegar à mesma porcentagem de precipitação tendo valores diferentes para cada fator.

Para ver essa ideia na prática, vamos voltar ao nosso exemplo do distrito com 40% de probabilidade de precipitação: se um analista tivesse 80% de certeza de que vai chover naquele distrito (medindo a velocidade do vento, a temperatura do ar, a umidade etc.), mas só espera que o sistema de precipitação cubra 50% da área, ele dirá que há uma “probabilidade de 40% de chuva” durante esse período de tempo.

Por outro lado, se outro analista estimasse que a precipitação iria cobrir 100% da área analisada, mas só tivesse 40% de certeza de que essa precipitação iria atingir o distrito, ele obteria o mesmo resultado: “40% de probabilidade de chuva em qualquer ponto do distrito durante esse período de tempo.”

Pequenas variações entre os sistemas

Cada meteorologista terá seus próprios modelos de medição e coleta de dados para calcular a probabilidade de precipitação nos locais que analisa —e alguns serão mais precisos que outros.

O importante é identificar o quão precisos são os métodos de coleta de dados atmosféricos que cada serviço possui na área específica em que você se encontra, algo que pode ser feito comparando-os e analisando qual deles se adequa melhor à realidade que você observa pela janela.

E, claro, não se pode esquecer que, por se basear em modelos probabilísticos, a meteorologia está longe de ser infalível.

Se você confiar apenas na previsão do tempo, é inevitável que um dia, por melhor que seja o sistema que usa, você saia de casa sem guarda-chuva com base na previsão do aplicativo —e seja pego na rua por um temporal.

Este texto foi originalmente publicado aqui.

The Problem With Weather Apps (The Atlantic)

theatlantic.com

Charlie Warzel

April 10, 2023


How are we still getting caught in the rain?

An illustration of a guy on his phone standing in rain showers.
Illustration by Daniel Zender. Source: Getty.

Technologically speaking, we live in a time of plenty. Today, I can ask a chatbot to render The Canterbury Tales as if written by Taylor Swift or to help me write a factually inaccurate autobiography. With three swipes, I can summon almost everyone listed in my phone and see their confused faces via an impromptu video chat. My life is a gluttonous smorgasbord of information, and I am on the all-you-can-eat plan. But there is one specific corner where technological advances haven’t kept up: weather apps.

Weather forecasts are always a game of prediction and probabilities, but these apps seem to fail more often than they should. At best, they perform about as well as meteorologists, but some of the most popular ones fare much worse. The cult favorite Dark Sky, for example, which shut down earlier this year and was rolled into the Apple Weather app, accurately predicted the high temperature in my zip code only 39 percent of the time, according to ForecastAdvisor, which evaluates online weather providers. The Weather Channel’s app, by comparison, comes in at 83 percent. The Apple app, although not rated by ForecastAdvisor, has a reputation for off-the-mark forecasts and has been consistently criticized for presenting faulty radar screens, mixing up precipitation totals, or, as it did last week, breaking altogether. Dozens of times, the Apple Weather app has lulled me into a false sense of security, leaving me wet and betrayed after a run, bike ride, or round of golf.

People love to complain about weather forecasts, dating back to when local-news meteorologists were the primary source for those planning their morning commutes. But the apps have produced a new level of frustration, at least judging by hundreds of cranky tweets over the past decade. Nearly two decades into the smartphone era—when anyone can theoretically harness the power of government weather data and dissect dozens of complex, real-time charts and models—we are still getting caught in the rain.


Weather apps are not all the same. There are tens of thousands of them, from the simply designed Apple Weather to the expensive, complex, data-rich Windy.App. But all of these forecasts are working off of similar data, which are pulled from places such as the National Oceanic and Atmospheric Administration (NOAA) and the European Centre for Medium-Range Weather Forecasts. Traditional meteorologists interpret these models based on their training as well as their gut instinct and past regional weather patterns, and different weather apps and services tend to use their own secret sauce of algorithms to divine their predictions. On an average day, you’re probably going to see a similar forecast from app to app and on television. But when it comes to how people feel about weather apps, these edge cases—which usually take place during severe weather events—are what stick in a person’s mind. “Eighty percent of the year, a weather app is going to work fine,” Matt Lanza, a forecaster who runs Houston’s Space City Weather, told me. “But it’s that 20 percent where people get burned that’s a problem.”

No people on the planet have a more tortured and conflicted relationship with weather apps than those who interpret forecasting models for a living. “My wife is married to a meteorologist, and she will straight up question me if her favorite weather app says something different than my forecast,” Lanza told me. “That’s how ingrained these services have become in most peoples’ lives.” The basic issue with weather apps, he argues, is that many of them remove a crucial component of a good, reliable forecast: a human interpreter who can relay caveats about models or offer a range of outcomes instead of a definitive forecast.

Lanza explained the human touch of a meteorologist using the example of a so-called high-resolution forecasting model that can predict only 18 hours out. It is generally quite good, he told me, at predicting rain and thunderstorms—“but every so often it runs too hot and over-indexes the chances of a bad storm.” This model, if left to its own devices, will project showers and thunderstorms blanketing the region for hours when, in reality, the storm might only cause 30 minutes of rain in an isolated area of the mapped region. “The problem is when you take the model data and push it directly into the app with no human interpretation,” he said. “Because you’re not going to get nuance from these apps at all. And that can mean a difference between a chance of rain all day and it’s going to rain all day.”

But even this explanation has caveats; all weather apps are different, and their forecasts have varying levels of sophistication. Some pipe model data right in, whereas others are curated using artificial intelligence. Peter Neilley, the Weather Channel’s director of weather forecasting sciences and technologies, said in an email that the company’s app incorporates “billions of weather data points,” adding that “our expert team of meteorologists does oversee and correct the process as needed.”

Weather apps might be less reliable for another reason too. When it comes to predicting severe weather such as snow, small changes in atmospheric moisture—the type of change an experienced forecaster might notice—can cause huge variances in precipitation outcomes. An app with no human curation might choose to average the model’s range of outcomes, producing a forecast that doesn’t reflect the dynamic situation on the ground. Or consider cities with microclimates: “Today, in Chicago, the lakefront will sit in the lower 40s, and the suburbs will be 50-plus degrees,” Greg Dutra, a meteorologist at ABC 7 Chicago, told me. “Often, the difference is even more stark—20-degree swings over just miles.” These sometimes subtle temperature disparities can mean very different forecasts for people living in the same region—something that one-size-fits-all weather apps don’t always pick up.

Naturally, meteorologists think that what they do is superior to forecasting by algorithm alone, but even weather-app creators told me that the challenges are real. “It’s impossible for a weather-data provider to be accurate everywhere in the world,” Brian Mueller, the founder of the app Carrot Weather, told me. His solution to the problem of app-based imprecision is to give users more ability to choose what they see when they open Carrot, letting them customize what specific weather information the app surfaces as well as what data sources the app will draw from. Mueller said that he learned from Dark Sky’s success how important beautiful, detailed radar maps were—both as a source of weather data and for entertainment purposes. In fact, meteorology seems to be only part of the allure when it comes to building a beloved weather app. Carrot has a pleasant design interface, with bright colors and Easter eggs scattered throughout, such as geography challenges based off of its weather maps. He’s also hooked Carrot up to ChatGPT to allow people to chat with the app’s fictional personality.


But what if these detailed models and dizzying maps, in the hands of weather rubes like myself,  are the real problem? “The general public has access to more weather information than ever, and I’d posit that that’s a bad thing,” Chris Misenis, a weather-forecasting consultant in North Carolina who goes by the name “Weather Moose,” told me. “You can go to PivotalWeather.com right now and pull up just about any model simulation you want.” He argues that these data are fine to look at if you know how to interpret them, but for people who aren’t trained to analyze them, they are at best worthless and at worst dangerous.

In fact, forecasts are better than ever, Andrew Blum, a journalist and the author of the book The Weather Machine: A Journey Inside the Forecast, told me. “But arguably, we are less prepared to understand,” he said, “and act upon that improvement—and a forecast is only as good as our ability to make decisions with it.” Indeed, even academic research around weather apps suggests that apps fail worst when they give users a false sense of certainty around forecasting. A 2016 paper for the Royal Meteorological Society argued that “the current way of conveying forecasts in the most common apps is guilty of ‘immodesty’ (‘not admitting that sometimes predictions may fail’) and ‘impoverishment’ (‘not addressing the broader context in which forecasts … are made’).”

The conflicted relationship that people have with weather apps may simply be a manifestation of the information overload that dominates all facets of modern life. These products grant anyone with a phone access to an overwhelming amount of information that can be wildly complex. Greg Dutra shared one such public high-resolution model from the NOAA with me that was full of indecipherable links to jargony terms such as “0-2 km max vertical vorticity.” Weather apps seem to respond mostly to this fire hose of data in two ways: By boiling them down to a reductive “partly sunny” icon, or by bombarding the user with information they might not need or understand. At its worst, a modern weather app seems to flatter people, entrusting them to do their own research even if they’re not equipped. I’m not too proud to admit that some of the fun of toying around with Dark Sky’s beautiful radar or Windy.App’s endless array of models is the feeling of role-playing as a meteorologist. But the truth is that I don’t really know what I’m looking at.

What people seem to be looking for in a weather app is something they can justify blindly trusting and letting into their lives—after all, it’s often the first thing you check when you roll over in bed in the morning. According to the 56,400 ratings of Carrot in Apple’s App Store, its die-hard fans find the app entertaining and even endearing. “Love my psychotic, yet surprisingly accurate weather app,” one five-star review reads. Although many people need reliable forecasting, true loyalty comes from a weather app that makes people feel good when they open it.

Our weather-app ambivalence is a strange pull between feeling grateful for instant access to information and simultaneously navigating a sense of guilt and confusion about how the experience is also, somehow, dissatisfying—a bit like staring down Netflix’s endless library and feeling as if there’s nothing to watch. Weather apps aren’t getting worse. In fact they’re only getting more advanced, inputting more and more data and offering them to us to consume. Which, of course, might be why they feel worse.

Datafolha: 9 entre 10 brasileiros acham que mudanças climáticas terão impacto em suas vidas (Folha de S.Paulo)

www1.folha.uol.com.br

Preocupação com eventos extremos une apoiadores de Lula (PT) e Bolsonaro (PL)

Lucas Lacerda

6 de abril de 2023


Nove entre dez brasileiros acham que vão sofrer impactos das mudanças climáticas na vida pessoal, e dois terços da população enxergam que a vida será muito prejudicada por eventos climáticos extremos nos próximos cinco anos.

Também há consenso sobre a distribuição desse impacto: 95% das pessoas acham que a parcela mais pobre sofrerá com esses efeitos.

Os dados fazem parte de pesquisa do Datafolha que ouviu 2.028 pessoas, de 126 municípios, com mais de 16 anos, nos dias 29 e 30 de março. A margem de erro é de dois pontos percentuais.

Enquanto a maioria acha que as mudanças climáticas vão prejudicar muito a parcela mais pobre da população (82%), uma minoria acha que a população rica vai sofrer da mesma forma (24%).

Quando avaliam a preocupação com os impactos na vida pessoal, 70% das mulheres afirmam que haverá muito prejuízo —índice que cai para 62% entre os homens.

Um motivo possível é o dano desigual da crise do clima, que, como já identificado em estudos, gera problemas sociais como migração, violência infantil e casamentos forçados, que afetam mais a população feminina.

Para Lori Regattieri, senior fellow da Mozilla Foundation, o destaque indica ainda que as mulheres podem estar mais atentas a riscos para a saúde própria e da família, além de reagirem mais rápido.

“Elas despontam em nível de preocupação principalmente quando temos questões que envolvem a saúde delas, da família e dos filhos”, diz a pesquisadora, que estuda comportamento digital e desinformação na agenda climática e socioambiental.

Regattieri destaca que a percepção também precisa considerar aspectos de cor e renda. “Quando falamos de mulheres negras, há maior probabilidade de morarem em áreas de risco. É onde se percebe o racismo ambiental.”

A percepção de muito prejuízo na vida pessoal foi apontada por 69% das pessoas pretas e pardas ouvidas na pesquisa, contra 61% entre pessoas brancas. A margem de erro é de três pontos percentuais para pessoas pardas, e quatro e seis para brancos e negros, respectivamente.

A pesquisa revela ainda uma preocupação com as mudanças climáticas muito similar entre quem declarou voto no presidente Luiz Inácio Lula da Silva (PT) e quem disse ter votado no ex-presidente Jair Bolsonaro (PL) no segundo turno das eleições de 2022. Os percentuais também são próximos quando comparam-se os de apoiadores de PT e PL (quando citadas apenas as siglas, sem mencionar os candidatos em questão).

O prejuízo na vida pessoal decorrente de mudanças no clima é apontado por 89% dos eleitores de Lula e 88% dos de Bolsonaro. A pesquisa, assim, pode indicar que o medo de impactos na própria vida supera o posicionamento político —em campanha, Lula disse que priorizaria a agenda climática, enquanto a gestão Bolsonaro promoveu um desmonte das políticas públicas ambientais.

Na visão de Marcio Astrini, secretário-executivo do Observatório do Clima, rede de organizações socioambientais, isso ocorre porque a relação entre o apoio político e mudanças climáticas ainda não é tão direta no Brasil quanto problemas de emprego, fome, pobreza e saúde.

“Para a composição do voto, a questão de clima e ambiente não é tão decisiva [no Brasil] como em países que já venceram esses problemas”, diz.

Astrini opina ainda que os eleitores de Bolsonaro não creditam o enfraquecimento da política ambiental à figura do ex-presidente.

“O que verificamos é que há uma narrativa criada para esse público: que o Bolsonaro não é uma pessoa ruim para a agenda de meio ambiente, que as acusações são invenção de esquerdistas, que o movimento ambiental do mundo é bancado por comunistas contra o desenvolvimento do país.”

Os danos imediatos que possam ser causados por uma chuva extremamente forte são outra preocupação em destaque na pesquisa. Para mais da metade da população (61%), a precipitação extrema é um risco para a casa onde moram, e 86% apontam risco para a infraestrutura —ruas, pontes e avenidas— da cidade em que vivem.

A percepção ampla sobre mudanças climáticas não é novidade no Brasil, de acordo com pesquisas anteriores do Datafolha. Levantamento realizado em 2010 mostrou que 75% dos brasileiros achavam que as atividades humanas contribuíam muito para o aquecimento global —o que é um consenso científico, amplamente difundido. Em 2019, esse índice caiu para 72%.

O mais recente relatório do painel científico do clima da ONU (IPCC, na sigla em inglês), lançado em 20 de março —poucos dias antes da realização da pesquisa do Datafolha, portanto—, enfatiza que o mundo vive sob pressão climática sem precedentes e que alguns danos já são irreversíveis.

Os cientistas alertam que o prazo para agir e frear o aquecimento do planeta em 1,5°C, meta do Acordo de Paris, é curto e exige ações rápidas dos países.

O projeto Planeta em Transe é apoiado pela Open Society Foundations.

Custo da ação contra crise climática é bem menor que o da inação, diz candidata a presidir IPCC (Folha de S.Paulo)

www1.folha.uol.com.br

Cientista brasileira Thelma Krug, que pode se tornar a primeira mulher no cargo, destaca necessidade de medidas rápidas

Cristiane Fontes

9 de abril de 2023


O Brasil apresenta nesta segunda (10) a candidatura da cientista Thelma Krug à presidência do IPCC (Painel Intergovernamental sobre Mudança do Clima da ONU), para o ciclo de 2023 a 2028.

Se eleita, Krug, que já é uma das vice-presidentes do órgão, será a primeira mulher e a primeira representante da América Latina no cargo mais alto da instituição. As eleições ocorrerão em sessão plenária em julho.

A matemática, com atuação no IPCC desde 2002, afirma que, além dos aprendizados sobre a evolução da ciência do clima —que hoje aponta como inequívoca a associação da ação humana ao aquecimento global—, foram o comprometimento dos milhares de autores do painel e o estímulo do neto, Luca, de 10 anos, que a levaram se candidatar a essa função.

Do último relatório do IPCC, lançado no final de março, ela destaca a necessidade de transformações em todos os setores da sociedade. As ações atuais, sublinham os cientistas que o assinam, não correspondem à urgência necessária para frear o aumento de temperatura do planeta.

“Rápidas, profundas e sustentadas reduções de emissões [de gases de efeito estufa] são necessárias para limitar o aquecimento a 1,5°C ou mesmo abaixo de 2°C”, diz Krug, que ressalta que as escolhas que fizermos nesta década terão um impacto direto para um futuro sustentável.

“O custo da ação vai ser bem menor do que o custo da inação, quando o planeta todo estiver sofrendo com esses impactos do clima com um aquecimento maior.”

Com o aumento do volume e da velocidade da produção científica sobre mudanças climáticas, ela defende que o painel produza relatórios menores e mais frequentes. Krug adianta que no próximo ciclo do painel será elaborado um documento especial sobre cidades.

“As cidades contribuem para aproximadamente 90% das emissões se nós considerarmos todo o escopo”, explica ela, que trabalhou por 37 anos no Inpe (Instituto Nacional de Pesquisas Espaciais), até 2019.

Krug decidiu se aposentar do instituto na época de acusações do então presidente Jair Bolsonaro (PL) de que os dados de desmatamento contabilizados pelo órgão seriam manipulados.

Como ser portadora de alertas tão sérios do IPCC sem levar o mundo ao cinismo e à inação? Os relatórios do IPCC já há muito tempo indicam a situação sobre a mudança do clima e, mais recentemente, essa inequívoca associação entre a ação humana e o aquecimento na atmosfera se tornou um fato.

A partir de 2018, o IPCC indicou a necessidade de transformações em todos os setores da sociedade, e a gente não viu uma resposta equivalente. Eu não diria que é inação, mas eu diria que a ação não corresponde à urgência que a ciência mostra, se quisermos ter um futuro sustentável.

Passados cinco anos, o que a gente vê é que esse desafio tornou-se ainda maior. Essa maior frequência de eventos extremos mostra que os custos já são grandes e serão muito maiores no futuro.

O custo da ação vai ser bem menor do que o custo da inação, quando o planeta todo estiver sofrendo com esses impactos do clima com um aquecimento maior.

O último relatório do IPCC diz que ainda temos tempo de conter os piores impactos da crise climática, se grandes e rápidas reduções de emissões de gases de efeito estufa forem feitas. Como isso pode ser realizado? O IPCC indica —e eu me fixo um pouco na parte de 1,5°C, porque 1,5°C [de aumento na temperatura] já vai ser insustentável para muitos países insulares— que as emissões têm de ser cortadas pela metade até 2030.

Não é que seja o final do mundo. Mas, se isso não acontecer, as coisas vão se tornando cada vez mais difíceis.

O relatório do IPCC não é fatalista, de forma alguma. Ele indica no seu relatório de mitigação que já existem opções de mitigação que nos levariam a reduzir pela metade [as emissões] em 2030.

Poderia comentar essas opções de mitigação? Você tem opções para todos os setores. No setor de energia, a gente fala muito da questão de descarbonização. Hoje há essa eletrificação dos automóveis, que é questionável, mas em muitos lugares poderia funcionar bem.

Se olharmos os preços da energia solar, eram muito altos, mas hoje são mais acessíveis para uma implementação mais larga. A expansão indica avanços que não estão acontecendo só no Brasil, mas em outras partes do mundo.

Outros exemplos também estão ocorrendo, principalmente na questão do uso da terra na agricultura, ou seja, principalmente, a redução do desmatamento, que é indicada como uma das formas de grandes reduções de emissões, e o Brasil é um exemplo disso.

Além de toda a parte de planejamento urbano. No próximo ciclo do IPCC, vamos ter um relatório especial sobre a mudança do clima em cidades. As cidades contribuem para aproximadamente 90% das emissões se nós considerarmos todo o escopo das cidades.

Qual deveria ser o papel do IPCC nos próximos anos, considerando o robusto consenso científico existente sobre a crise do clima, a inação política e a revisão do Acordo de Paris em 2025? O IPCC, através de modelos cada vez mais robustos, faz essa avaliação da literatura [científica] em todo o mundo. E a velocidade de publicações científicas na temática de mudança do clima tem sido enorme.

Talvez o painel decida refletir sobre a importância e necessidade de uma frequência maior de relatórios menores, que permitam que a gente esteja sempre atualizado.

Quais foram os seus principais aprendizados na vice-presidência do IPCC e por que lançar agora a sua candidatura à presidência do painel? A submissão do meu nome como candidata à presidência do IPCC é prerrogativa do ponto focal do Brasil, que nesse caso é do Ministério das Relações Exteriores.

O Ministério das Relações Exteriores fez consultas com outros ministérios, e a indicação do meu nome foi bem recebida por todos, junto com a minha contribuição ao IPCC por 22 anos.

Durante esse período, houve um aprendizado enorme: não só de entender a evolução da ciência, mas também de ter um conjunto de autores que, de uma maneira voluntária, se dedicam a produzir essa ciência, porque acreditam que vai gerar ação.

Essa dedicação, essa vontade de fazer a diferença desses cientistas, dedicando tempo a isso de uma maneira muito profunda, me fizeram perguntar: será que eu também posso fazer uma diferença nesse papel [na presidência do IPCC]? Nós temos muito bons candidatos, eu sou uma delas.

Uma análise recente do portal Carbon Brief revelou que a proporção de mulheres e de autores do sul global no IPCC aumentou nas últimas décadas, mas ainda há muito a ser feito pela diversidade. Como o IPCC vem implementando a política de equidade de gênero, estabelecida em 2020, e quais são as suas propostas nesse sentido? Quando a gente fala da questão de gênero, acho que ela é um pouquinho mais complexa. Porque a gente normalmente trabalha com esse binário, feminino e masculino, mas hoje existe uma diversidade bem maior a ser analisada.

Eu particularmente penso que não é você aumentar o número de mulheres, aumentar a diversidade. Acho que a questão maior é se essas pessoas que estão lá, em maior número, estão sendo respeitadas. Elas estão sendo incluídas como tais, elas têm a percepção de pertencimento?

O painel autorizou que fosse contratada uma empresa que vai fazer uma pesquisa junto a todos que participaram de 2015 a 2023, para buscar entender se se sentiram parte desse conjunto de autores de uma maneira equitativa, se oportunidades foram dadas a todos que estão envolvidos. Acho que os resultados vão ser muito importantes para entender as ações necessárias.

Em uma entrevista recente à Agência Pública, a senhora afirmou que a vulnerabilidade da produção agropecuária no Brasil aos impactos das mudanças climáticas merece atenção especial. O que deveria ser feito nos próximos anos? Essa afirmação foi baseada nas projeções feitas para a região Centro-Oeste, que já está sendo impactada pela mudança do clima. Ou seja, com o aumento atual, essa região já está sendo impactada e, para 1,5°C [de aquecimento], esses riscos de impactos aumentam por conta de maiores secas.

A gente espera que planos de ação antecipem o que o futuro pode ser e, fazendo isso, eles não estão dizendo que não existe mais solução, mas, se chegarmos lá, como estaremos preparados. A própria Embrapa estava desenvolvendo espécies mais resilientes ao calor, à falta de água.

O que deveria ser priorizado pelo país para reconquistar credibilidade na cena climática internacional? E o que deveria ser negociado em termos de cooperação e financiamento, além de recursos para o Fundo Amazônia? O nosso grande gargalo continua sendo a questão do desmatamento, que foi um dos elementos que fizeram com que o Brasil perdesse muito da sua credibilidade.

Acho que o Fundo Amazônia não é suficiente. Ele tem sido importantíssimo, mas financeiramente é insuficiente. Esse fundo ele compensa, vamos assim dizer, as reduções de emissões quando estas são demonstradas, e nós não estamos num estágio onde isso seja sustentável.

Apesar da importância do fundo, a gente precisa de mais investimentos de outros países, que possibilitem com que essa cooperação possa vir sem vínculos iniciais, para dar ao Brasil condição de iniciar esse processo de reversão.


RAIO-X

Thelma Krug, 72

Graduada em matemática pela Roosevelt University (EUA), com doutorado em estatística espacial pela University of Sheffield (Inglaterra), foi pesquisadora no Inpe (Instituto Nacional de Pesquisas Espaciais) por 37 anos. Foi ainda secretária nacional adjunta no Ministério da Ciência, Tecnologia e Inovação e diretora de políticas de combate ao desmatamento no Ministério do Meio Ambiente. No IPCC, copresidiu a força-tarefa sobre inventários nacionais de gases de efeito estufa de 2002 a 2015 e ocupa, desde 2015, uma das três vice-presidências do painel.

Governo de SP foi alertado de risco no Sahy 48 horas antes, diz centro federal (Folha de S.Paulo)

www1.folha.uol.com.br

OUTRO LADO: Defesa Civil diz que enviou SMS para 34 mil celulares cadastrados na região do litoral norte

Isabela Palhares

22 de fevereiro de 2023


O Cemaden (Centro Nacional de Monitoramento e Alerta para Desastres Naturais) afirma ter alertado o Governo de São Paulo cerca de 48 horas antes sobre o alto risco de desastre no litoral paulista.

Ao menos 48 pessoas morreram, sendo 47 em São Sebastião e 1 em Ubatuba —a última atualização foi feita nesta quarta (22) pela Defesa Civil.

Segundo o Cemaden, que é um órgão federal, a Defesa Civil estadual foi alertada sobre a ocorrência de chuvas fortes na região e o alto risco de desastres em uma reunião online na manhã de sexta (17). A vila do Sahy, o ponto em que mais pessoas morreram, foi citada como uma área de alto risco para deslizamento.

Em nota, a Defesa Civil diz que emitiu alertas preventivos à população desde que foi informada da previsão de fortes chuvas.

“Nós alertamos e avisamos a Defesa Civil na sexta, foram quase 48 horas antes de o desastre acontecer. Seguimos o protocolo que é estabelecido, alertando a Defesa Civil estadual para que ela se organizasse com os municípios”, disse Osvaldo Moraes, presidente do Cemaden.

O Cemaden é ligado ao Ministério da Ciência, Tecnologia e Inovação. O centro é responsável por monitorar índices meteorológicos e geológicos e alertar, caso necessário, os órgãos de prevenção.

Moraes diz que, ainda na quinta-feira (16), um boletim meteorológico já indicava as fortes chuvas na região. Esse boletim foi repassado para a Defesa Civil do estado.

Depois desse primeiro alerta, o Cemaden se reuniu com um representante da Defesa Civil estadual na sexta de manhã. “Nós emitimos boletins diários, o de quinta já indicava o risco. Mas o de sexta-feira aumentou o nível de alerta para essa região.”

A Defesa Civil disse que enviou 14 alertas de mensagem de texto (SMS) para mais de 34 mil celulares cadastrados na região do litoral norte. O órgão informou ainda que começou a articular ações as defesas civis municipais na quinta-feira quando recebeu a previsão de fortes chuvas na região.

“Os primeiros avisos divulgados pela Defesa Civil do Estado, que ocorreram ainda de forma preventiva, foram publicados por volta das 15 horas de quinta-feira, nas redes sociais da Defesa Civil e do Governo com informações sobre o volume de chuvas estimado para o período, bem como as medidas de segurança que poderiam ser adotadas pela população em áreas de risco”, diz a nota.

O órgão disse ainda que à 00h52 de sexta, ao acompanhar imagens de radares e satélites, enviou a primeira mensagem de SMS com o alerta.

Nas redes sociais da Defesa Civil, a primeira mensagem de alertas para chuvas fortes no sábado foi feita às 12h22. A mensagem, no entanto, não fala sobre os riscos de desmoronamento.

Durante a noite, outros alertas foram postados pelo órgão e nenhum deles faz menção ao risco de desmoronamento de terra. Foi só às 19h49 uma mensagem recomendou que as pessoas deixassem o local se precisassem.

Para os especialistas, a proporção do desastre e o elevado número de vítimas mostram que apenas a estratégia de envio de SMS aos moradores não é eficiente. Além de não ser possível saber se as pessoas viram os alertas, não havia um plano ou orientação sobre o que fazer na situação.

“Você cria um sistema de aviso, as pessoas podem até receber a mensagem, mas não sabem o que fazer com aquela informação. Não há uma orientação para onde devem ir, quando sair de casa, o que levar”, diz Eduardo Mario Mendiondo, coordenador científico do Ceped (Centro de Estudos e Pesquisas sobre Desastres) da USP.

Para ele, a estratégias devem pensar também criação de rotas de fugas em áreas de risco e na orientação aos moradores. “A população precisa saber qual o risco está correndo e como se proteger. É injusto depois dizer que eles não queriam sair de casa, eles não tinham orientação correta do que fazer.”

Segundo ele, em diversas cidades do país, como Petrópolis e Salvador, o alerta ocorre por uma sirene.

“Você garante que todo mundo vai ouvir a qualquer momento do dia. É o instrumento mais antigo, mas que funciona. Uma sirene dá o recado claro do risco iminente”, diz.

Para Fernando Rocha Nogueira, coordenador do LabGRIS (Laboratório Gestão de Riscos) da UFABC, as autoridade brasileiras assistem de forma inerte aos desastres que ocorrem no país. Segundo ele, o Brasil conta com bons sistemas de monitoramento, mas não desenvolve estratégias para proteger a população.

“Temos um problema grave de comunicação no país. Tinha o mapeamento de que iria chover muito, que havia um alto risco e não se deu a atenção devida. Milhares de pessoas desceram para o litoral, ignorando a previsão. Nós não temos conscientização do risco, nós vivemos um negacionismo das informações climáticas”, diz.


Como foram os avisos

Quinta-feira (16)
Boletim do Cemaden alerta para a ocorrência de chuvas fortes e volumosas no litoral paulista durante o Carnaval

Sexta-feira (17)
Em reunião virtual, o Cemaden faz alerta sobre a previsão de chuvas fortes e o risco de deslizamentos de terra para integrantes da Defesa Civil do estado. A vila do Sahy estava entre as áreas apontadas como de maior risco

Sábado (18)

12h22: Defesa Civil do Estado avisa nas redes sociais que a chuva estava se espalhando pela região de Ubatuba e Caraguatatuba. “Tem vento e raios. Atinge municípios vizinhos. Tenha cuidado nas próximas horas”, diz a mensagem

18h33: Uma nova mensagem da Defesa Civil é postada alertando para chuva persistente na região.

19h49: Outra mensagem é postada pela Defesa Civil diz que a “chuva está se espalhando” pelo Litoral Norte e pede para que as pessoas “tenham cuidado nas próximas horas”

23h13: A Defesa Civil alerta que a chuva persiste na região e recomenda “não enfrente alagamentos. Fique atento a inclinação de muros e a rachaduras. Se precisar saia do local”

03h15: O órgão volta a alerta sobre a chuva forte e persistente no litoral norte e diz “não enfrente alagamentos. Fique atento a inclinação de muros e a rachaduras. Se precisar saia do local.”

Tragédia no litoral norte indica necessidade de aprimorar previsão de chuvas (Folha de S.Paulo)

www1.folha.uol.com.br

Especialistas apontam falta de investimento e defasagem do modelo; temporal foi agravado por ciclone extratropical, diz meteorologista

Carlos Petrocilo

22 de fevereiro de 2023


A falta de investimento em novas tecnologias, aliada à aceleração das mudanças climáticas, torna a previsão do tempo mais imprecisa no Brasil, segundo especialistas ouvidos pela Folha.

O serviço de meteorologia é essencial para que órgãos públicos, como Defesa Civil, se preparem com antecedência na tentativa de mitigar os efeitos de um temporal.

No litoral norte, a Defesa Civil havia emitido alerta na quinta-feira (16) para a possibilidade de registrar um acumulado de 250 milímetros no final de semana. Porém, o volume de chuva chegou a 682 mm, de acordo com o Governo de São Paulo.

Como consequência do temporal, 48 pessoas morreram, sendo 47 em São Sebastião e uma em Ubatuba, conforme os dados desta quarta (22).

Segundo o professor Eduardo Mario Mendiondo, coordenador científico do Ceped (Centro de Educação e Pesquisa de Desastres) da USP, os modelos atuais de previsão utilizam parâmetros atmosféricos calibrados por condições históricas e precisam ser atualizados.

“O clima está mudando, com maior magnitude e com maior frequência de ocorrência de extremos. Os modelos precisam ser atualizados de forma constante, em escala global e em regiões específicas, com microclima e dinâmicas peculiares, como é o caso da Serra do Mar e da Baixada Santista”, afirma Mendiondo.

O professor chama atenção para falta de investimentos públicos. Segundo ele, o governo precisa reforçar o quadro de servidores e investir em novas ferramentas para Cemaden (Centro Nacional de Monitoramento e Alertas de Desastres Naturais), Inpe (Instituto Nacional de Pesquisas Espaciais) e Inmet (Instituto Nacional de Meteorologia).

“Falta aumentar em 20 vezes o potencial de supercomputadores atuais em território nacional, falta contratar até 20 vezes o número servidores de manutenção e operação de supercomputadores e falta contratar até em dez vezes o número atual de técnicos operadores”, afirma o professor da USP.

Para suprir tais necessidades, Mendiondo estima que é necessário investimentos de R$ 25 bilhões por ano. “Isto para converter essas novas evidências científicas, melhorando as previsões, seguindo exemplos como Japão, Europa e Estados Unidos.”

O meteorologista Mamedes Luiz Melo afirma que o volume de chuva foi agravado pela ação do ciclone extratropical associado a uma frente fria que passou pelo Sul do país e por São Paulo. “A tecnologia vinha alertando, mas estamos lidando com algo móvel na atmosfera”, afirma Melo.

A Defesa Civil diz, em nota, que os boletins especiais e de aviso de risco meteorológicos são emitidos com base em simulações numéricas de previsão do tempo. “Tais limiares baseiam-se no histórico da chuva da região em que a chuva acumulada representa risco para transtornos, como deslizamentos, desabamentos, alagamentos, enchentes e ocorrências relacionadas a raios e ventos”, disse a Defesa Civil.

As projeções do Inmet, que emite alertas sobre riscos de deslizamentos para órgãos públicos, previram volumes de chuva menores do que um modelo usado pela empresa de meteorologia MetSul.

O modelo da empresa, chamado WRF, apontou que algumas áreas poderiam ter chuva acima de 600 mm em alguns pontos do terreno, o que acabou se confirmando. As previsões mais graves do instituto federal falavam em chuvas no patamar de 400 mm.

A previsão do Inmet para a chuva no litoral norte utilizou seis modelos numéricos diferentes. O instituto também usa o WRF, mas com uma resolução menor do que a da MetSul. Ou seja, a empresa conseguiu fazer os cálculos a partir de detalhes mais precisos do relevo do que o órgão público.

“O WRF tem se mostrado uma ferramenta muito importante na identificação de eventos extremos de chuva”, diz a meteorologista Estael Sias, da MetSul. “É importante assinalar que o modelo WRF é meramente uma ferramenta de trabalho, um produto, e não a previsão, e que o prognóstico final divulgado ao público e clientes leva em conta outros modelos e também a experiência do meteorologista para eventos extremos.”

Segundo o meteorologista Franco Nadal Villela, da equipe do Inmet em São Paulo, a resolução não é o fator mais decisivo na previsão de chuvas. Ele diz que os modelos usados pelo instituto deram conta de prever que o temporal em São Sebastião seria muito grave, embora não tenham chegado ao valor de 600 mm.

“Há modelos de menor resolução que pontualmente previram menos precipitação”, diz Villela. “As previsões modeladas estavam prevendo bem este evento e as variações na quantificação de precipitação [volume de chuva por hora] são mais uma das varáveis que ponderamos para emitir alertas.”

A Folha enviou perguntas através de email ao Inpe, que coordena o Centro de Previsão de Tempo e Estudos Climáticos (Cptec), mas não obteve resposta até a publicação deste texto.

Para José Marengo, climatologista e coordenador do Cemaden, defende mudanças [sic]. Ele explica que o modelo de previsão do tempo divide a região em áreas de até 200 quilômetros quadrados. Com isso, não é possível prever a quantidade de chuva aproximada em toda a região.

“O Brasil não está preparado tecnologicamente. É como se dividisse o Brasil em caixas grandes de 200 quilômetros quadrados, por isso há distorções dentro da mesma região. Pode ter áreas em que chove menos e outras que superaram os 600 milímetros, a modelagem não é perfeita”, afirma Marengo.

Ele também alerta para a falta de novas tecnologias. “O supercomputador do Inpe, o Tupã, que resolve as equações matemáticas em alta velocidade, é de 2010 e considerado obsoleto”, afirma o climatologista.

O professor Pedro Côrtes, do Instituto de Energia e Ambiente da USP, concorda que é área precise de mais recursos, mas pondera que as previsões dos órgãos do governo foram suficientes para apontar que uma tempestade grave se aproximava.

“A espera pelo investimento não pode postergar a solução do problema, as previsões já funcionam.”

A Folha publicou, no dia 28 de dezembro de 2010, a inauguração do supercomputador. Na ocasião, o Tupã custou R$ 31 milhões e era utilizado em países como Estados Unidos, China, Alemanha e Rússia. Para operá-lo, o Inpe precisou construir uma nova central elétrica, de mil quilowatts —antes tinha só 280 quilowatts disponíveis no instituto.

Até hoje os especialistas apontam o Tupã como o melhor equipamento que o Brasil possui para prever, além de enchentes, ondas de calor e frio e os períodos de seca.

Socially constructed silence? Protecting policymakers from the unthinkable. (Open Democracy)

The scientific community is profoundly uncomfortable with the storm of political controversy that climate research is attracting. What’s going on?

Paul Hoggett and Rosemary Randall

6 June 2016

    PaulHoggetcroppede.jpg

    Credit: By NASA Scientific Visualization Studio/Goddard Space Flight Center. Public Domain, Wikimedia.org.

    Some things can’t be said easily in polite company. They cause offence or stir up intense anxiety. Where one might expect a conversation, what actually occurs is what the sociologist Eviator Zerubavel calls a ‘socially constructed silence.’

    In his book Don’t Even Think About It,George Marshall argues that after the fiasco of COP 15 at Copenhagen and ‘Climategate’—when certain sections of the press claimed (wrongly as it turned out) that leaked emails of researchers at the University of East Anglia showed that data had been manipulated—climate change became a taboo subject among most politicians, another socially constructed silence with disastrous implications for the future of climate action.

    In 2013-14 we carried out interviews with leading UK climate scientists and communicators to explore how they managed the ethical and emotional challenges of their work. While the shadow of Climategate still hung over the scientific community, our analysis drew us to the conclusion that the silence Marshall spoke about went deeper than a reaction to these specific events.

    Instead, a picture emerged of a community which still identified strongly with an idealised picture of scientific rationality, in which the job of scientists is to get on with their research quietly and dispassionately. As a consequence, this community is profoundly uncomfortable with the storm of political controversy that climate research is now attracting.

    The scientists we spoke to were among a minority who had become engaged with policy makers, the media and the general public about their work. A number of them described how other colleagues would bury themselves in the excitement and rewards of research, denying that they had any responsibility beyond developing models or crunching the numbers. As one researcher put it, “so many scientists just want to do their research and as soon as it has some relevance, or policy implications, or a journalist is interested in their research, they are uncomfortable.”

    We began to see how for many researchers, this idealised picture of scientific practice might also offer protection at an unconscious level from the emotional turbulence aroused by the politicisation of climate change

    In her classic study of the ‘stiff upper lip’ culture of nursing in the UK in the 1950s, the psychoanalyst and social researcher Isobel Menzies Lyth developed the idea of ‘social defences against anxiety,’ and it seems very relevant here. A social defence is an organised but unconscious way of managing the anxieties that are inherent in certain occupational roles. For example, the practice of what was then called the ‘task list’ system fragmented nursing into a number of routines, each one executed by a different person—hence the ‘bed pan nurse’, the ‘catheter nurse’ and so on.

    Ostensibly, this was done to generate maximum efficiency, but it also protected nurses from the emotions that were aroused by any real human involvement with patients, including anxiety, something that was deemed unprofessional by the nursing culture of the time. Like climate scientists, nurses were meant to be objective and dispassionate. But this idealised notion of the professional nurse led to the impoverishment of patient care, and meant that the most emotionally mature nurses were the least likely to complete their training.

    While it’s clear that social defences such as hyper-rationality and specialisation enable climate scientists to get on with their work relatively undisturbed by public anxieties, this approach also generates important problems. There’s a danger that these defences eventually break down and anxiety re-emerges, leaving individuals not only defenceless but with the additional burden of shame and personal inadequacy for not maintaining that stiff upper lip. Stress and burnout may then follow. 

    Although no systematic research has been undertaken in this area, there is anecdotal evidence of such burnout in a number of magazine articles like those by Madeleine Thomas and Faith Kearns, in which climate scientists speak out about the distress that they or others have experienced, their depression at their findings, and their dismay at the lack of public and policy response.

    Even if social defences are successful and anxiety is mitigated, this very success can have unintended consequences. By treating scientific findings as abstracted knowledge without any personal meaning, climate researchers have been slow to take responsibility for their own carbon footprints, thus running the risk of being exposed for hypocrisy by the denialist lobby. One research leader candidly reflected on this failure: “Oh yeah and the other thing [that’s] very, very important I think is that we ought to change the way we do research so we’re sustainable in the research environment, which we’re not now because we fly everywhere for conferences and things.”

    The same defences also contribute to the resistance of most climate scientists to participation in public engagement or intervention in the policy arena, leaving these tasks to a minority who are attacked by the media and even by their own colleagues. One of our interviewees who has played a major role in such engagement recalled being criticised by colleagues for “prostituting science” by exaggerating results in order to make them “look sexy.”You know we’re all on the same side,” she continued, “why are we shooting arrows at each other, it is ridiculous.”

    The social defences of logic, reason and careful debate were of little use to the scientific community in these cases, and their failure probably contributed to internal conflicts and disagreements when anxiety could no longer be contained—so they found expression in bitter arguments instead. This in turn makes those that do engage with the public sphere excessively cautious, which encourages collusion with policy makers who are reluctant to embrace the radical changes that are needed.

    As one scientist put it when discussing the goal agreed at the Paris climate conference of limiting global warming to no more than 2°C: “There is a mentality in [the] group that speaks to policy makers that there are some taboo topics that you cannot talk about. For instance the two degree target on climate change…Well the emissions are going up like this (the scientist points upwards at a 45 degree angle), so two degrees at the moment seems completely unrealistic. But you’re not allowed to say this.”

    Worse still, the minority of scientists who are tempted to break the silence on climate change run the risk of being seen as whistleblowers by their colleagues. Another research leader suggested that—in private—some of the most senior figures in the field believe that the world is heading for a rise in temperature closer to six degrees than two. 

    “So repeatedly I’ve heard from researchers, academics, senior policy makers, government chief scientists, [that] they can’t say these things publicly,” he told us, “I’m sort of deafened, deafened by the silence of most people who work in the area that we work in, in that they will not criticise when there are often evidently very political assumptions that underpin some of the analysis that comes out.”

    It seems that the idea of a ‘socially constructed silence’ may well apply to crucial aspects of the interface between climate scientists and policy makers. If this is the case then the implications are very serious. Despite the hope that COP 21 has generated, many people are still sceptical about whether the rhetoric of Paris will be translated into effective action.

    If climate change work is stuck at the level of  ‘symbolic policy making’—a set of practices designed to make it look as though political elites are doing something while actually doing nothing—then it becomes all the more important for the scientific community to find ways of abandoning the social defences we’ve described and speak out as a whole, rather than leaving the task to a beleaguered and much-criticised minority.

    The Scientist’s Warning: Climate Change Has Pushed Earth To ‘Code Red’ (Forbes)

    David Bressan

    Oct 27, 2022,07:10am EDT

    Reports Indicate 2016 Was Hottest Year On Record
    Greenhouse gases are among the chief causes of global warming and climate change. Getty Images

    An international team led by Oregon State University researchers says in a report published today that the Earth’s vital signs have reached “code red” and that “humanity is unequivocally facing a climate emergency.”

    In the special report, “World Scientists’ Warning of a Climate Emergency 2022,” the authors note that 16 of 35 planetary vital signs they use to track climate change are at record extremes. The report’s authors share new data illustrating the increasing frequency of extreme heat events and heat-related deaths, rising global tree cover loss because of fires, and a greater prevalence of insects and diseases thriving in the warming climate. Food insecurity and malnutrition caused by droughts and other climate-related extreme events in developing countries are increasing the number of climate refugees.

    The researchers note that in 2022 atmospheric carbon-dioxide peaked at levels not seen for millions of years. Earth is on track to heat up between 2.1 and 2.9 degrees by the end of the century compared to pre-industrial times, according to a new report from the United Nations Framework Convention on Climate Change.

    William Ripple, a distinguished professor in the OSU College of Forestry, and postdoctoral researcher Christopher Wolf are the lead authors of the report, and 10 other U.S. and global scientists are co-authors.

    “Look at all of these heat waves, fires, floods and massive storms,” Ripple said. “The specter of climate change is at the door and pounding hard.”

    The report follows the original World Scientists’ Warning to Humanity, published in 1992, and the 2017 updated version World Scientists’ Warning to Humanity: A Second Notice, co-signed by more than 15,000 scientists in 184 countries.

    “As we can see by the annual surges in climate disasters, we are now in the midst of a major climate crisis, with far worse to come if we keep doing things the way we’ve been doing them,” Wolf said.

    “As Earth’s temperatures are creeping up, the frequency or magnitude of some types of climate disasters may actually be leaping up,” said the University of Sydney’s Thomas Newsome, a co-author of the report. “We urge our fellow scientists around the world to speak out on climate change.”

    “The Scientist’s Warning” is a documentary by the research team summarizing the report’s results and can be watched online:

    Material provided by the Oregon State Universityand the American Institute of Biological Sciences.

    The Coming California Megastorm (New York Times)

    nytimes.com

    Raymond Zhong


    A different ‘Big One’ is approaching. Climate change is hastening its arrival.

    Aug. 12, 2022

    California, where earthquakes, droughts and wildfires have shaped life for generations, also faces the growing threat of another kind of calamity, one whose fury would be felt across the entire state.

    This one will come from the sky.

    According to new research, it will very likely take shape one winter in the Pacific, near Hawaii. No one knows exactly when, but from the vast expanse of tropical air around the Equator, atmospheric currents will pluck out a long tendril of water vapor and funnel it toward the West Coast.

    This vapor plume will be enormous, hundreds of miles wide and more than 1,200 miles long, and seething with ferocious winds. It will be carrying so much water that if you converted it all to liquid, its flow would be about 26 times what the Mississippi River discharges into the Gulf of Mexico at any given moment.

    When this torpedo of moisture reaches California, it will crash into the mountains and be forced upward. This will cool its payload of vapor and kick off weeks and waves of rain and snow.

    The coming superstorm — really, a rapid procession of what scientists call atmospheric rivers — will be the ultimate test of the dams, levees and bypasses California has built to impound nature’s might.

    But in a state where scarcity of water has long been the central fact of existence, global warming is not only worsening droughts and wildfires. Because warmer air can hold more moisture, atmospheric rivers can carry bigger cargoes of precipitation. The infrastructure design standards, hazard maps and disaster response plans that protected California from flooding in the past might soon be out of date.

    As humans burn fossil fuels and heat up the planet, we have already increased the chances each year that California will experience a monthlong, statewide megastorm of this severity to roughly 1 in 50, according to a new study published Friday. (The hypothetical storm visualized here is based on computer modeling from this study.)

    In the coming decades, if global average temperatures climb by another 1.8 degrees Fahrenheit, or 1 degree Celsius — and current trends suggest they might — then the likelihood of such storms will go up further, to nearly 1 in 30.

    At the same time, the risk of megastorms that are rarer but even stronger, with much fiercer downpours, will rise as well.

    These are alarming possibilities. But geological evidence suggests the West has been struck by cataclysmic floods several times over the past millennium, and the new study provides the most advanced look yet at how this threat is evolving in the age of human-caused global warming.

    The researchers specifically considered hypothetical storms that are extreme but realistic, and which would probably strain California’s flood preparations. According to their findings, powerful storms that once would not have been expected to occur in an average human lifetime are fast becoming ones with significant risks of happening during the span of a home mortgage.

    “We got kind of lucky to avoid it in the 20th century,” said Daniel L. Swain, a climate scientist at the University of California, Los Angeles, who prepared the new study with Xingying Huang of the National Center for Atmospheric Research in Boulder, Colo. “I would be very surprised to avoid it occurring in the 21st.”

    Unlike a giant earthquake, the other “Big One” threatening California, an atmospheric river superstorm will not sneak up on the state. Forecasters can now spot incoming atmospheric rivers five days to a week in advance, though they don’t always know exactly where they’ll hit or how intense they’ll be.

    Using Dr. Huang and Dr. Swain’s findings, California hopes to be ready even earlier. Aided by supercomputers, state officials plan to map out how all that precipitation will work its way through rivers and over land. They will hunt for gaps in evacuation plans and emergency services.

    The last time government agencies studied a hypothetical California megaflood, more than a decade ago, they estimated it could cause $725 billion in property damage and economic disruption. That was three times the projected fallout from a severe San Andreas Fault earthquake, and five times the economic damage from Hurricane Katrina, which left much of New Orleans underwater for weeks in 2005.

    Dr. Swain and Dr. Huang have handed California a new script for what could be one of its most challenging months in history. Now begin the dress rehearsals.

    “Mother Nature has no obligation to wait for us,” said Michael Anderson, California’s state climatologist.

    In fact, nature has not been wasting any time testing California’s defenses. And when it comes to risks to the water system, carbon dioxide in the atmosphere is hardly the state’s only foe.

    THE ULTIMATE CURVEBALL

    On Feb. 12, 2017, almost 190,000 people living north of Sacramento received an urgent order: Get out. Now. Part of the tallest dam in America was verging on collapse.

    That day, Ronald Stork was in another part of the state, where he was worrying about precisely this kind of disaster — at a different dam.

    Standing with binoculars near California’s New Exchequer Dam, he dreaded what might happen if large amounts of water were ever sent through the dam’s spillways. Mr. Stork, a policy expert with the conservation group Friends of the River, had seen on a previous visit to Exchequer that the nearby earth was fractured and could be easily eroded. If enough water rushed through, it might cause major erosion and destabilize the spillways.

    He only learned later that his fears were playing out in real time, 150 miles north. At the Oroville Dam, a 770-foot-tall facility built in the 1960s, water from atmospheric rivers was washing away the soil and rock beneath the dam’s emergency spillway, which is essentially a hillside next to the main chute that acts like an overflow drain in a bathtub. The top of the emergency spillway looked like it might buckle, which would send a wall of water cascading toward the cities below.

    Mr. Stork had no idea this was happening until he got home to Sacramento and found his neighbor in a panic. The neighbor’s mother lived downriver from Oroville. She didn’t drive anymore. How was he going to get her out?

    Mr. Stork had filed motions and written letters to officials, starting in 2001, about vulnerabilities at Oroville. People were now in danger because nobody had listened. “It was nearly soul crushing,” he said.

    “With flood hazard, it’s never the fastball that hits you,” said Nicholas Pinter, an earth scientist at the University of California, Davis. “It’s the curveball that comes from a direction you don’t anticipate. And Oroville was one of those.”

    Ronald Stork in his office at Friends of the River in Sacramento.

    The spillway of the New Exchequer Dam.

    Such perils had lurked at Oroville for so long because California’s Department of Water Resources had been “overconfident and complacent” about its infrastructure, tending to react to problems rather than pre-empt them, independent investigators later wrote in a report. It is not clear this culture is changing, even as the 21st-century climate threatens to test the state’s aging dams in new ways. One recent study estimated that climate change had boosted precipitation from the 2017 storms at Oroville by up to 15 percent.

    A year and a half after the crisis, crews were busy rebuilding Oroville’s emergency spillway when the federal hydropower regulator wrote to the state with some unsettling news: The reconstructed emergency spillway will not be big enough to safely handle the “probable maximum flood,” or the largest amount of water that might ever fall there.

    Sources: Global Historical Climatology Network, Huang and Swain (2022) Measurements taken from the Oroville weather station and the nearest modeled data point

    This is the standard most major hydroelectric projects in the United States have to meet. The idea is that spillways should basically never fail because of excessive rain.

    Today, scientists say they believe climate change might be increasing “probable maximum” precipitation levels at many dams. When the Oroville evacuation was ordered in 2017, nowhere near that much water had been flowing through the dam’s emergency spillway.

    Yet California officials have downplayed these concerns about the capacity of Oroville’s emergency spillway, which were raised by the Federal Energy Regulatory Commission. Such extreme flows are a “remote” possibility, they argued in a letter last year. Therefore, further upgrades at Oroville aren’t urgently needed.

    In a curt reply last month, the commission said this position was “not acceptable.” It gave the state until mid-September to submit a plan for addressing the issue.

    The Department of Water Resources told The Times it would continue studying the matter. The Federal Energy Regulatory Commission declined to comment.

    “People could die,” Mr. Stork said. “And it bothers the hell out of me.”

    WETTER WET YEARS

    Donald G. Sullivan was lying in bed one night, early in his career as a scientist, when he realized his data might hold a startling secret.

    For his master’s research at the University of California, Berkeley, he had sampled the sediment beneath a remote lake in the Sacramento Valley and was hoping to study the history of vegetation in the area. But a lot of the pollen in his sediment cores didn’t seem to be from nearby. How had it gotten there?

    When he X-rayed the cores, he found layers where the sediment was denser. Maybe, he surmised, these layers were filled with sand and silt that had washed in during floods.

    It was only late that night that he tried to estimate the ages of the layers. They lined up neatly with other records of West Coast megafloods.

    “That’s when it clicked,” said Dr. Sullivan, who is now at the University of Denver.

    His findings, from 1982, showed that major floods hadn’t been exceptionally rare occurrences over the past eight centuries. They took place every 100 to 200 years. And in the decades since, advancements in modeling have helped scientists evaluate how quickly the risks are rising because of climate change.

    For their new study, which was published in the journal Science Advances, Dr. Huang and Dr. Swain replayed portions of the 20th and 21st centuries using 40 simulations of the global climate. Extreme weather events, by definition, don’t occur very often. So by using computer models to create realistic alternate histories of the past, present and future climate, scientists can study a longer record of events than the real world offers.

    Dr. Swain and Dr. Huang looked at all the monthlong California storms that took place during two time segments in the simulations, one in the recent past and the other in a future with high global warming, and chose one of the most intense events from each period. They then used a weather model to produce detailed play-by-plays of where and when the storms dump their water.

    Those details matter. There are “so many different factors” that make an atmospheric river deadly or benign, Dr. Huang said.

    Xingying Huang of the National Center for Atmospheric Research in Boulder, Colo. Rachel Woolf for The New York Times

    The New Don Pedro Dam spillway.

    Wes Monier, a hydrologist, with a 1997 photo of water rushing through the New Don Pedro Reservoir spillway.

    In the high Sierras, for example, atmospheric rivers today largely bring snow. But higher temperatures are shifting the balance toward rain. Some of this rain can fall on snowpack that accumulated earlier, melting it and sending even more water toward towns and cities below.

    Climate change might be affecting atmospheric rivers in other ways, too, said F. Martin Ralph of the Scripps Institution of Oceanography at the University of California, San Diego. How strong their winds are, for instance. Or how long they last: Some storms stall, barraging an area for days on end, while others blow through quickly.

    Scientists are also working to improve atmospheric river forecasts, which is no easy task as the West experiences increasingly sharp shifts from very dry conditions to very wet and back again. In October, strong storms broke records in Sacramento and other places. Yet this January through March was the driest in the Sierra Nevada in more than a century.

    “My scientific gut says there’s change happening,” Dr. Ralph said. “And we just haven’t quite pinned down how to detect it adequately.”

    Better forecasting is already helping California run some of its reservoirs more efficiently, a crucial step toward coping with wetter wet years and drier dry ones.

    On the last day of 2016, Wes Monier was looking at forecasts on his iPad and getting a sinking feeling.

    Mr. Monier is chief hydrologist for the Turlock Irrigation District, which operates the New Don Pedro Reservoir near Modesto. The Tuolumne River, where the Don Pedro sits, was coming out of its driest four years in a millennium. Now, some terrifying rainfall projections were rolling in.

    First, 23.2 inches over the next 16 days. A day later: 28.8 inches. Then 37.1 inches, roughly what the area normally received in a full year.

    If Mr. Monier started releasing Don Pedro’s water too quickly, homes and farms downstream would flood. Release too much and he would be accused of squandering water that would be precious come summer.

    But the forecasts helped him time his flood releases precisely enough that, after weeks of rain, the water in the dam ended up just shy of capacity. Barely a drop was wasted, although some orchards were flooded, and growers took a financial hit.

    The next storm might be even bigger, though. And even the best data and forecasts might not allow Mr. Monier to stop it from causing destruction. “There’s a point there where I can’t do anything,” he said.

    KATRINA 2.0

    How do you protect a place as vast as California from a storm as colossal as that? Two ways, said David Peterson, a veteran engineer. Change where the water goes, or change where the people are. Ideally, both. But neither is easy.

    Firebaugh is a quiet, mostly Hispanic city of 8,100 people, one of many small communities that power the Central Valley’s prodigious agricultural economy. Many residents work at nearby facilities that process almonds, pistachios, garlic and tomatoes.

    Firebaugh also sits right on the San Joaquin River.

    For a sleepless stretch of early 2017, Ben Gallegos, Firebaugh’s city manager, did little but watch the river rise and debate whether to evacuate half the town. Water from winter storms had already turned the town’s cherished rodeo grounds into a swamp. Now it was threatening homes, schools, churches and the wastewater treatment plant. If that flooded, people would be unable to flush their toilets. Raw sewage would flow down the San Joaquin.

    Luckily, the river stopped rising. Still, the experience led Mr. Gallegos to apply for tens of millions in funding for new and improved levees around Firebaugh.

    Levees change where the water goes, giving rivers more room to swell before they inundate the land. Levee failures in New Orleans were what turned Katrina into an epochal catastrophe, and after that storm, California toughened levee standards in urbanized areas of the Sacramento and San Joaquin Valleys, two major river basins of the Central Valley.

    The idea is to keep people out of places where the levees don’t protect against 200-year storms, or those with a 0.5 percent chance of occurring in any year. To account for rising seas and the shifting climate, California requires that levees be recertified as providing this level of defense at least every 20 years.

    Firebaugh, Calif., on the San Joaquin River, is home to 8,100 people and helps power the Central Valley’s agricultural economy.

    Ben Gallegos, the Firebaugh city manager.

    A 6-year-old’s birthday celebration in Firebaugh.

    The problem is that once levees are strengthened, the areas behind them often become particularly attractive for development: fancier homes, bigger buildings, more people. The likelihood of a disaster is reduced, but the consequences, should one strike, are increased.

    Federal agencies try to stop this by not funding infrastructure projects that induce growth in flood zones. But “it’s almost impossible to generate the local funds to raise that levee if you don’t facilitate some sort of growth behind the levee,” Mr. Peterson said. “You need that economic activity to pay for the project,” he said. “It puts you in a Catch-22.”

    A project to provide 200-year protection to the Mossdale Tract, a large area south of Stockton, one of the San Joaquin Valley’s major cities, has been on pause for years because the Army Corps of Engineers fears it would spur growth, said Chris Elias, executive director of the San Joaquin Area Flood Control Agency, which is leading the project. City planners have agreed to freeze development across thousands of acres, but the Corps still hasn’t given its final blessing.

    The Corps and state and local agencies will begin studying how best to protect the area this fall, said Tyler M. Stalker, a spokesman for the Corps’s Sacramento District.

    The plodding pace of work in the San Joaquin Valley has set people on edge. At a recent public hearing in Stockton on flood risk, Mr. Elias stood up and highlighted some troubling math.

    The Department of Water Resources says up to $30 billion in investment is needed over the next 30 years to keep the Central Valley safe. Yet over the past 15 years, the state managed to spend only $3.5 billion.

    “We have to find ways to get ahead of the curve,” Mr. Elias said. “We don’t want to have a Katrina 2.0 play out right here in the heart of Stockton.”

    As Mr. Elias waits for projects to be approved and budgets to come through, heat and moisture will continue to churn over the Pacific. Government agencies, battling the forces of inertia, indifference and delay, will make plans and update policies. And Stockton and the Central Valley, which runs through the heart of California, will count down the days and years until the inevitable storm.

    T​​he Sacramento-San Joaquin Delta near Stockton, Calif.

    Sources

    The megastorm simulation is based on the “ARkHist” storm modeled by Huang and Swain, Science Advances (2022), a hypothetical statewide, 30-day atmospheric river storm sequence over California with an approximately 2 percent likelihood of occurring each year in the present climate. Data was generated using the Weather Research and Forecasting model and global climate simulations from the Community Earth System Model Large Ensemble.

    The chart of precipitation at Oroville compares cumulative rainfall at the Oroville weather station before the 2017 crisis with cumulative rainfall at the closest data point in ARkHist.

    The rainfall visualization compares observed hourly rainfall in December 2016 from the Los Angeles Downtown weather station with rainfall at the closest data point in a hypothetical future megastorm, the ARkFuture scenario in Huang and Swain (2022). This storm would be a rare but plausible event in the second half of the 21st century if nations continue on a path of high greenhouse-gas emissions.

    Additional credits

    The 3D rainfall visualization and augmented reality effect by Nia Adurogbola, Jeffrey Gray, Evan Grothjan, Lydia Jessup, Max Lauter, Daniel Mangosing, Noah Pisner, James Surdam and Raymond Zhong.

    Photo editing by Matt McCann.

    Produced by Sarah Graham, Claire O’Neill, Jesse Pesta and Nadja Popovich.

    Audio produced by Kate Winslett.

    Cloud Wars: Mideast Rivalries Rise Along a New Front (New York Times)

    nytimes.com

    Alissa J. Rubin, Bryan Denton


    Artificial lakes like this one in Dubai are helping fuel an insatiable demand for water in the United Arab Emirates.
    Artificial lakes like this one in Dubai are helping fuel an insatiable demand for water in the United Arab Emirates.

    As climate change makes the region hotter and drier, the U.A.E. is leading the effort to squeeze more rain out of the clouds, and other countries are rushing to keep up.

    Aug. 28, 2022

    ABU DHABI, United Arab Emirates — Iranian officials have worried for years that other nations have been depriving them of one of their vital water sources. But it was not an upstream dam that they were worrying about, or an aquifer being bled dry.

    In 2018, amid a searing drought and rising temperatures, some senior officials concluded that someone was stealing their water from the clouds.

    “Both Israel and another country are working to make Iranian clouds not rain,” Brig. Gen. Gholam Reza Jalali, a senior official in the country’s powerful Revolutionary Guards Corps, said in a 2018 speech.

    The unnamed country was the United Arab Emirates, which had begun an ambitious cloud-seeding program, injecting chemicals into clouds to try to force precipitation. Iran’s suspicions are not surprising, given its tense relations with most Persian Gulf nations, but the real purpose of these efforts is not to steal water, but simply to make it rain on parched lands.

    As the Middle East and North Africa dry up, countries in the region have embarked on a race to develop the chemicals and techniques that they hope will enable them to squeeze rain drops out of clouds that would otherwise float fruitlessly overhead.

    With 12 of the 19 regional countries averaging less than 10 inches of rainfall a year, a decline of 20 percent over the past 30 years, their governments are desperate for any increment of fresh water, and cloud seeding is seen by many as a quick way to tackle the problem.

    The tawny mountain range that rises above Khor Fakkan in the United Arab Emirates is where summer updrafts often create clouds that make excellent candidates for seeding.

    And as wealthy countries like the emirates pump hundreds of millions of dollars into the effort, other nations are joining the race, trying to ensure that they do not miss out on their fair share of rainfall before others drain the heavens dry — despite serious questions about whether the technique generates enough rainfall to be worth the effort and expense.

    Morocco and Ethiopia have cloud-seeding programs, as does Iran. Saudi Arabia just started a large-scale program, and a half-dozen other Middle Eastern and North African countries are considering it.

    China has the most ambitious program worldwide, with the aim of either stimulating rain or halting hail across half the country. It is trying to force clouds to rain over the Yangtze River, which is running dry in some spots.

    While cloud seeding has been around for 75 years, experts say the science has yet to be proven. And they are especially dismissive of worries about one country draining clouds dry at the expense of others downwind.

    The life span of a cloud, in particular the type of cumulus clouds most likely to produce rain, is rarely more than a couple of hours, atmospheric scientists say. Occasionally, clouds can last longer, but rarely long enough to reach another country, even in the Persian Gulf, where seven countries are jammed close together.

    But several Middle Eastern countries have brushed aside the experts’ doubts and are pushing ahead with plans to wring any moisture they can from otherwise stingy clouds.

    Today, the unquestioned regional leader is the United Arab Emirates. As early as the 1990s, the country’s ruling family recognized that maintaining a plentiful supply of water would be as important as the nation’s huge oil and gas reserves in sustaining its status as the financial and business capital of the Persian Gulf.

    While there had been enough water to sustain the tiny country’s population in 1960, when there were fewer than 100,000 people, by 2020 the population had ballooned to nearly 10 million. And the demand for water soared, as well. United Arab Emirates residents now use roughly 147 gallons per person a day, compared with the world average of 47 gallons, according to a 2021 research paper funded by the emirates.

    Currently, that demand is being met by desalination plants. Each facility, however, costs $1 billion or more to build and requires prodigious amounts of energy to run, especially when compared with cloud seeding, said Abdulla Al Mandous, the director of the National Center of Meteorology and Seismology in the emirates and the leader of its cloud-seeding program.

    After 20 years of research and experimentation, the center runs its cloud-seeding program with near military protocols. Nine pilots rotate on standby, ready to bolt into the sky as soon as meteorologists focusing on the country’s mountainous regions spot a promising weather formation — ideally, the types of clouds that can build to heights of as much as 40,000 feet.

    They have to be ready on a moment’s notice because promising clouds are not as common in the Middle East as in many other parts of the world.

    “We are on 24-hour availability — we live within 30 to 40 minutes of the airport — and from arrival here, it takes us 25 minutes to be airborne,” said Capt. Mark Newman, a South African senior cloud-seeding pilot. In the event of multiple, potentially rain-bearing clouds, the center will send more than one aircraft.

    The United Arab Emirates uses two seeding substances: the traditional material made of silver iodide and a newly patented substance developed at Khalifa University in Abu Dhabi that uses nanotechnology that researchers there say is better adapted to the hot, dry conditions in the Persian Gulf. The pilots inject the seeding materials into the base of the cloud, allowing it to be lofted tens of thousands of feet by powerful updrafts.

    And then, in theory, the seeding material, made up of hygroscopic (water attracting) molecules, bonds to the water vapor particles that make up a cloud. That combined particle is a little bigger and in turn attracts more water vapor particles until they form droplets, which eventually become heavy enough to fall as rain — with no appreciable environmental impact from the seeding materials, scientists say.

    That is in theory. But many in the scientific community doubt the efficacy of cloud seeding altogether. A major stumbling block for many atmospheric scientists is the difficulty, perhaps the impossibility, of documenting net increases in rainfall.

    “The problem is that once you seed, you can’t tell if the cloud would have rained anyway,” said Alan Robock, an atmospheric scientist at Rutgers University and an expert in evaluating climate engineering strategies.

    Another problem is that the tall cumulus clouds most common in summer in the emirates and nearby areas can be so turbulent that it is difficult to determine if the seeding has any effect, said Roy Rasmussen, a senior scientist and an expert in cloud physics at the National Center for Atmospheric Research in Boulder, Colo.

    Israel, a pioneer in cloud seeding, halted its program in 2021 after 50 years because it seemed to yield at best only marginal gains in precipitation. It was “not economically efficient,” said Pinhas Alpert, an emeritus professor at the University of Tel Aviv who did one of the most comprehensive studies of the program.

    Cloud seeding got its start in 1947, with General Electric scientists working under a military contract to find a way to de-ice planes in cold weather and create fog to obscure troop movements. Some of the techniques were later used in Vietnam to prolong the monsoon season, in an effort to make it harder for the North Vietnamese to supply their troops.

    While the underlying science of cloud seeding seems straightforward, in practice, there are numerous problems. Not all clouds have the potential to produce rain, and even a cloud seemingly suitable for seeding may not have enough moisture. Another challenge in hot climates is that raindrops may evaporate before they reach the ground.

    Sometimes the effect of seeding can be larger than expected, producing too much rain or snow. Or the winds can shift, carrying the clouds away from the area where the seeding was done, raising the possibility of “unintended consequences,” notes a statement from the American Meteorological Society.

    “You can modify a cloud, but you can’t tell it what to do after you modify it,” said James Fleming, an atmospheric scientist and historian of science at Colby College in Maine.

    “It might snow; it might dissipate. It might go downstream; it might cause a storm in Boston,” he said, referring to an early cloud-seeding experiment over Mount Greylock in the Berkshire Mountains of western Massachusetts.

    This seems to be what happened in the emirates in the summer of 2019, when cloud seeding apparently generated such heavy rains in Dubai that water had to be pumped out of flooded residential neighborhoods and the upscale Dubai mall.

    Despite the difficulties of gathering data on the efficacy of cloud seeding, Mr. Al Mandous said the emirates’ methods were yielding at least a 5 percent increase in rain annually — and almost certainly far more. But he acknowledged the need for data covering many more years to satisfy the scientific community.

    Over last New Year’s weekend, said Mr. Al Mandous, cloud seeding coincided with a storm that produced 5.6 inches of rain in three days — more precipitation than the United Arab Emirates often gets in a year.

    In the tradition of many scientists who have tried to modify the weather, he is ever optimistic. There is the new cloud-seeding nanosubstance, and if the emirates just had more clouds to seed, he said, maybe they could make more rain for the country.

    And where would those extra clouds come from?

    “Making clouds is very difficult,” he acknowledged. “But, who knows, maybe God will send us somebody who will have the idea of how to make clouds.”

    Cobra Coral: Rock in Rio dispensa médium e tem previsão de chuva em shows (Splash)

    uol.com.br

    Fernanda Talarico De Splash, em São Paulo 29/08/2022 04h00


    O Rock in Rio está chegando! Depois de três anos, o evento de música voltará a acontecer no Parque Olímpico, Rio de Janeiro. Ao todo, serão sete dias de shows: 2, 3, 4, 8, 9, 10 e 11 de setembro. As apresentações acontecem em diferentes palcos, todos a céu aberto, o que gera uma grande preocupação: será que vai chover?

    O Rock in Rio 2022 será a segunda edição seguida do evento que não contará com a parceria da produção com a Fundação Cacique Cobra Coral (FCCC), entidade esotérica que diz controlar o clima.

    Ana Avila, meteorologista da Cepagri/Unicamp, afirma a Splash, assim como em 2019, quem for ao evento pode precisar separar o dinheiro da capa de chuva.

    Ana explicou que os primeiros três dias de festival devem ter um clima mais seco. “O tempo é bom, ensolarado.” No entanto, a partir do dia 8, pode ser que o público enfrente momentos não tão agradáveis.

    “Há a possibilidade de pancadas de chuvas. De fazer sol, mas com pancadas de chuvas. Não tem como cravar se será de dia ou de noite, mas elas podem acontecer.”

    “De forma geral, não há nada que possa impedir a atividade ou qualquer evento. O que pode acontecer são pancadas de chuvas. Quanto mais próximos chegarmos dos dias do Rock in Rio, podemos saber melhor as intensidades.”

    Se a previsão da especialista se concretizar, os shows de Iron Maiden, Post Malone, Jason Derulo, Dream Theater, Demi Lovato, Justin Bieber e outros que tocam nos primeiros dias de festival, acontecerão em uma noite sem chuva. Porém, os fãs de Guns N’ Roses, Green Day, Billy Idol, Coldplay, Dua Lipa e mais podem acabar se molhando durante as apresentações.

    Quanto às temperaturas, Avila explica que nos primeiros dias elas podem variar entre 18ºC e 27ºC e, depois, a partir do dia 8 de setembro, em decorrência de nebulosidade e pancadas de chuvas, elas tendem a diminuir um pouco. “Ou seja, vai continuar calor, não vai haver uma amplitude muito grande. De noite, as mínimas serão de 19ºC e máxima de 22ºC.”

    Sem parceria com Fundação Cacique Cobra Coral

    Comandada pela médium Adelaide Scritori, que diz incorporar o espírito do Cacique Cobra Coral, entidade capaz de controlar o tempo, a fundação foi uma parceira histórica do Rock in Rio, além de ter mantido diversas colaborações com a prefeitura do Rio de Janeiro desde 2015 para, por exemplo, evitar fortes chuvas nas viradas de ano em Copacabana.

    Procurada por Splash, a assessoria do Rock in Rio confirmou que não há mais a parceria com a FCCC. Ela foi questionada sobre o motivo do rompimento, mas até a publicação desta reportagem, não respondeu. A Fundação Cacique Cobra Coral também foi procurada, mas não respondeu nenhuma tentativa de contato.

    Segundo reportagem do jornal Extra, Roberto Medina, o empresário responsável pelo evento, se desentendeu com a fundação depois que um grande temporal aconteceu em um dos dias do Rock in Rio de 2015.

    À época, um representante da FCCC explicou que a médium se atrasou 30 minutos para chegar ao local do evento pois houve uma confusão com o adesivo do estacionamento. Quando finalmente conseguiram entrar, a chuva já tinha começado.

    Em 2019, já sem a parceria, o festival foi novamente castigado pelo mau tempo e houve dias em que atrações como montanha-russa e roda gigante nem mesmo chegaram a abrir.

    Governo nacionalista da Hungria demite meteorologistas após previsão cancelar show (Folha de S.Paulo)

    www1.folha.uol.com.br

    24.ago.2022 às 23h01

    Risco de tempestades não se confirmou, e mídia ligada a Orbán liderou críticas a agência


    Dirigentes do Serviço Nacional de Meteorologia da Hungria foram demitidas depois de uma previsão de chuvas fortes levar o governo nacionalista de Viktor Orbán a cancelar um tradicional show de fogos de artifício em Budapeste no último fim de semana.

    As informações são da agência de notícias Associated Press. O espetáculo, realizado anualmente em homenagem ao Dia de Santo Estevão, estava marcado para a noite do sábado (20). O show húngaro nessa data é tido como um dos maiores da Europa, o que explica o apreço do premiê pelo evento.

    Naquela tarde, no entanto, o governo anunciou o cancelamento da festividade por orientação do serviço de meteorologia, que previa “condições climáticas extremas” para cerca de 21h.

    Em vez de avançar sobre a capital como previsto, porém, a tempestade mudou de direção, restringindo-se ao leste da Hungria. Budapeste continuou seca.

    O Serviço Nacional de Meteorologia publicou um pedido de desculpas nas redes sociais no domingo (21), afirmando que certo nível de incerteza faz parte da meteorologia, mas na segunda (22) o ministro de Inovação de Orbán, Laszlo Palkovics, demitiu a chefe e a vice da agência. Kornelia Radics dirigia o serviço desde 2013, e tinha Gyula Horvath como braço direito desde 2016.

    Embora Palkovics não tenha dado uma razão oficial para as demissões, a agência meteorológica foi duramente criticada por meios de comunicação alinhados a Orbán. Eles afirmam que o “grave erro” do serviço causou um adiamento desnecessário.

    Agências de notícias destacaram, porém, que parcela considerável de húngaros se opunha à escala e ao custo da explosão dos fogos, em especial num momento delicado como o atual, de crise econômica e Guerra da Ucrânia. Uma petição pedindo o cancelamento do espetáculo e um uso mais pragmático de sua verba reuniu quase 200 mil assinaturas.

    Ainda segundo a Associated Press, o espetáculo buscaria mostrar de forma resumida os mil anos desde o nascimento da Hungria cristã até os dias de hoje, focando valores nacionais caros à plataforma de Orbán. O lançamento dos fogos foi remarcado para o próximo sábado (27).

    Nesta terça (23), a agência de meteorologia publicou uma nota exigindo a readmissão das chefes demitidas. O órgão afirma que está sob “pressão política” no que se refere aos modelos usados para a previsão do tempo no feriado e que os responsáveis por pressioná-los “ignoram incertezas cientificamente aceitas inerentes à previsão do tempo”.

    Orbán, que em abril conquistou seu quinto mandato como premiê —o quarto consecutivo—, lidera o que chama de projeto de “democracia iliberal”, com medidas anti-imigração, anti-LGBTQIA+ e contra a liberdade de imprensa. A postura rende uma série de atritos com a União Europeia, bloco do qual a Hungria faz parte.

    Seca histórica atinge metade do México e leva a espiral de violência e desespero (Folha de S.Paulo)

    www1.folha.uol.com.br

    Crise climática impacta chuvas, e dois terços do país enfrentam problemas no fornecimento de água

    Maria Abi-Habib e Bryan Avelar

    7 de agosto de 2022


    O homem vestindo um boné de beisebol azul enche baldes com água de um caminhão do governo. Fonte: New York Times

    O México —ou grande parte do país— está ficando sem água. Uma seca extrema tem deixado as torneiras secas, e quase dois terços dos municípios enfrentam escassez que vem obrigando as pessoas a encarar horas em filas para entregas de água feitas pelo governo em alguns locais.

    A falta d’água está tão grave que moradores já fizeram barreiras em rodovias e sequestraram funcionários para exigir mais carregamentos. Os números são mesmo assustadores: em julho, 8 dos 32 estados enfrentaram estiagem de extrema a moderada, levando 1.546 dos 2.463 municípios a enfrentar cortes no fornecimento, segundo a Comissão Nacional de Água.

    Em meados de julho, a seca atingia 48% do território do México —no ano passado, a situação afetou 28% do país.

    Vincular uma seca isolada à crise climática requer análise, mas cientistas não têm dúvida de que o aquecimento global pode alterar os padrões de chuva no mundo e está elevando a probabilidade de ocorrência de secas.

    Do outro lado da fronteira norte, nos últimos anos a maior parte da metade ocidental dos EUA sofre com estiagem de moderada a severa. São as duas décadas mais secas na região em 1.200 anos.

    A crise está especialmente aguda em Monterrey, um dos centros econômicos mais importantes do México, com uma região metropolitana de 5 milhões de habitantes. Alguns bairros estão sem água há 75 dias, levando escolas a fechar as portas antes das férias de verão. Um jornalista percorreu várias lojas à procura de água potável, incluindo um supermercado Walmart, em vão.

    Baldes estão em falta no comércio ou são vendidos a preços astronômicos, enquanto os habitantes juntam recipientes para coletar a água distribuída por caminhões enviados aos bairros mais afetados. Alguns usam latas de lixo limpas, e crianças lutam para ajudar a carregar a água.

    A crise afeta inclusive as regiões de alta renda. “Aqui a gente tem que sair à caça de água”, diz Claudia Muñiz, 38, cuja família frequentemente tem passado uma semana sem água corrente. “Num momento de desespero, as pessoas explodem.”

    Monterrey fica no norte do México e viu sua população crescer nos últimos anos, acompanhando o boom econômico. O clima tipicamente árido da região não ajuda a suprir as necessidades da população, e a crise climática reduz as chuvas já escassas.

    Hoje os moradores podem caminhar sobre o leito da represa da barragem de Cerro Prieto, que no passado era uma das maiores fontes de água da cidade e uma importante atração turística, com animados restaurantes à beira da água, pesca, passeios de barco e esqui aquático.

    A chuva que caiu em julho em partes do estado de Nuevo León, que faz divisa com o Texas e cuja capital é Monterrey, representou apenas 10% da média mensal registrada desde 1960, segundo Juan Ignacio Barragán Villareal, diretor-geral da agência local de recursos hídricos. “Nem uma gota caiu no estado inteiro em março”, diz. Foi o primeiro março sem chuvas desde que se começou a registrar esses dados, em 1960.

    Hoje o governo distribui 9 milhões de litros de água por dia para 400 bairros. O motorista de caminhão-pipa Alejandro Casas conta que, quando começou na função há cinco anos, ajudava os bombeiros e era chamado uma ou duas vezes por mês para levar água a um local incendiado. Ele passava muitos dias de trabalho apenas olhando para o telefone.

    Mas desde janeiro ele trabalha sem parar, fazendo até dez viagens por dia, para suprir cerca de 200 famílias a cada vez. Quando ele chega a um local, uma longa fila já serpenteia pelas ruas. Pessoas levam recipientes que comportam até 200 litros e passam a tarde sob o sol para receber água só à meia-noite —e ela pode ser a única entregue por até uma semana.

    Ninguém policia as filas, por isso é comum ocorrerem brigas, com moradores de outras comunidades tentando se infiltrar. Em maio o caminhão de Casas foi assaltado por jovens que subiram no assento do passageiro e o ameaçaram, exigindo que ele levasse o veículo ao bairro deles. “Se a gente não fosse para onde eles queriam, iam nos sequestrar.”

    Casas seguiu a ordem, encheu os baldes dos moradores e foi libertado.

    Maria de los Angeles, 45, nasceu e cresceu em Ciénega de Flores, cidade próxima a Monterrey. Ela diz que a crise está afetando sua família e seu negócio. “Nunca antes vi isso. Só temos água nas torneiras a cada quatro ou cinco dias”, diz.

    O viveiro de plantas de jardim é a única fonte de renda de sua família e requer mais água do que a que chega apenas ocasionalmente às torneiras. “Toda semana sou obrigada a comprar um tanque que me custa 1.200 pesos [R$ 300] de um fornecedor particular”, diz. É metade de sua receita semanal. “Não aguento mais.”

    Pequenos e microempresários como ela estão frustrados por serem abandonados à própria sorte, enquanto as grandes indústrias podem operar quase normalmente: as fábricas conseguem receber 50 milhões de metros cúbicos de água por ano, devido a concessões federais que lhes garantem acesso especial aos aquíferos da cidade.

    O governo está tendo dificuldade em responder à crise. Para tentar mitigar estiagens futuras, o estado está investindo US$ 97 milhões na construção de uma estação de tratamento de águas servidas e pretende comprar água de uma estação de dessalinização em construção num estado vizinho. Também gastou US$ 82 milhões para alugar mais caminhões, pagar motoristas adicionais e cavar mais poços.

    O governador de Nuevo León, Samuel García, recentemente exortou o mundo a agir em conjunto para combater a crise climática. “Ela nos alcançou”, escreveu no Twitter. “Hoje precisamos cuidar do ambiente, é uma questão de vida ou morte.”

    You’ve heard of water droughts. Could ‘energy’ droughts be next? (Science Daily)

    Date: April 12, 2022

    Source: Columbia University

    Summary: Drawing on 70 years of historic wind and solar-power data, researchers built an AI model to predict the probability of a network-scale ‘drought,’ when daily production of renewables fell below a target threshold. Under a threshold set at the 30th percentile, when roughly a third of all days are low-production days, the researchers found that Texas could face a daily energy drought for up to four months straight. Batteries would be unable to compensate for a drought of this length, and if the system relied on solar energy alone, the drought could be expected to last twice as long — for eight months.


    Renewable energy prices have fallen by more than 70 percent in the last decade, driving more Americans to abandon fossil fuels for greener, less-polluting energy sources. But as wind and solar power continue to make inroads, grid operators may have to plan for large swings in availability.

    The warning comes from Upmanu Lall, a professor at Columbia Engineering and the Columbia Climate School who has recently turned his sights from sustainable water use to sustainable renewables in the push toward net-zero carbon emissions.

    “Designers of renewable energy systems will need to pay attention to changing wind and solar patterns over weeks, months, and years, the way water managers do,” he said. “You won’t be able to manage variability like this with batteries. You’ll need more capacity.”

    In a new modeling study in the journal Patterns, Lall and Columbia PhD student Yash Amonkar, show that solar and wind potential vary widely over days and weeks, not to mention months to years. They focused on Texas, which leads the country in generating electricity from wind power and is the fifth-largest solar producer. Texas also boasts a self-contained grid that’s as big as many countries’, said Lall, making it an ideal laboratory for charting the promise and peril of renewable energy systems.

    Drawing on 70 years of historic wind and solar-power data, the researchers built an AI model to predict the probability of a network-scale “drought,” when daily production of renewables fell below a target threshold. Under a threshold set at the 30th percentile, when roughly a third of all days are low-production days, the researchers found that Texas could face a daily energy drought for up to four months straight.

    Batteries would be unable to compensate for a drought of this length, said Lall, and if the system relied on solar energy alone, the drought could be expected to last twice as long — for eight months. “These findings suggest that energy planners will have to consider alternate ways of storing or generating electricity, or dramatically increasing the capacity of their renewable systems,” he said.

    Anticipating Future ‘Energy’ Droughts — in Texas, and Across the Continental United States

    The research began six years ago, when Lall and a former graduate student, David Farnham, examined wind and solar variability at eight U.S. airports, where weather records tend to be longer and more detailed. They wanted to see how much variation could be expected under a hypothetical 100% renewable-energy grid.

    The results, which Farnham published in his PhD thesis, weren’t a surprise. Farnham and Lall found that solar and wind potential, like rainfall, is highly variable based on the time of year and the place where wind turbines and solar panels have been sited. Across eight cities, they found that renewable energy potential rose and fell from the long-term average by as much as a third in some seasons.

    “We coined the term ‘energy’ droughts since a 10-year cycle with this much variation from the long-term average would be seen as a major drought,” said Lall. “That was the beginning of the energy drought work.”

    In the current study, Lall chose to zoom in on Texas, a state well-endowed with both sun and wind. Lall and Amonkar found that persistent renewable energy droughts could last as long as a year even if solar and wind generators were spread across the entire state. The conclusion, Lall said, is that renewables face a storage problem that can only realistically be solved by adding additional capacity or sources of energy.

    “In a fully renewable world, we would need to develop nuclear fuel or hydrogen fuel, or carbon recycling, or add much more capacity for generating renewables, if we want to avoid burning fossil fuels,” he said.

    In times of low rainfall, water managers keep fresh water flowing through the spigot by tapping municipal reservoirs or underground aquifers. Solar and wind energy systems have no equivalent backup. The batteries used to store excess solar and wind power on exceptionally bright and gusty days hold a charge for only a few hours, and at most, a few days. Hydropower plants provide a potential buffer, said Lall, but not for long enough to carry the system through an extended dry spell of intermittent sun and wind.

    “We won’t solve the problem by building a larger network,” he said. “Electric grid operators have a target of 99.99% reliability while water managers strive for 90 percent reliability. You can see what a challenging game this will be for the energy industry, and just how valuable seasonal and longer forecasts could be.”

    In the next phase of research, Lall will work with Columbia Engineering professors Vijay Modi and Bolun Xu to see if they can predict both energy droughts and “floods,” when the system generates a surplus of renewables. Armed with these projections, they hope to predict the rise and fall of energy prices.


    Journal Reference:

    1. Yash Amonkar, David J. Farnham, Upmanu Lall. A k-nearest neighbor space-time simulator with applications to large-scale wind and solar power modeling. Patterns, 2022; 3 (3): 100454 DOI: 10.1016/j.patter.2022.100454

    How a little-discussed revision of climate science could help avert doom (Washington Post)

    washingtonpost.com

    Mark Hertsgaard, Saleemul Huq, Michael E. Mann

    Feb. 23, 2022

    We can reduce global temperatures faster than we once thought — if we act now

    One of the biggest obstacles to avoiding global climate breakdown is that so many people think there’s nothing we can do about it.

    They point out that record-breaking heat waves, fires and storms are already devastating communities and economies throughout the world. And they’ve long been told that temperatures will keep rising for decades to come, no matter how many solar panels replace oil derricks or how many meat-eaters go vegetarian. No wonder they think we’re doomed.

    But climate science actually doesn’t say this. To the contrary, the best climate science you’ve probably never heard of suggests that humanity can still limit the damage to a fraction of the worst projections if — and, we admit, this is a big if — governments, businesses and all of us take strong action starting now.

    For many years, the scientific rule of thumb was that a sizable amount of temperature rise was locked into the Earth’s climate system. Scientists believed — and told policymakers and journalists, who in turn told the public — that even if humanity hypothetically halted all heat-trapping emissions overnight, carbon dioxide’s long lifetime in the atmosphere, combined with the sluggish thermal properties of the oceans, would nevertheless keep global temperatures rising for 30 to 40 more years. Since shifting to a zero-carbon global economy would take at least a decade or two, temperatures were bound to keep rising for at least another half-century.

    But guided by subsequent research, scientists dramatically revised that lag time estimate down to as little as three to five years. That is an enormous difference that carries paradigm-shifting and broadly hopeful implications for how people, especially young people, think and feel about the climate emergency and how societies can respond to it.

    This revised science means that if humanity slashes emissions to zero, global temperatures will stop rising almost immediately. To be clear, this is not a get-out-of-jail-free card. Global temperatures will not fall if emissions go to zero, so the planet’s ice will keep melting and sea levels will keep rising. But global temperatures will stop their relentless climb, buying humanity time to devise ways to deal with such unavoidable impacts. In short, we are not irrevocably doomed — or at least we don’t have to be, if we take bold, rapid action.

    The science we’re referencing was included — but buried — in the United Nations Intergovernmental Panel on Climate Change’s most recent report, issued in August. Indeed, it was first featured in the IPCC’s landmark 2018 report, “Global warming of 1.5 C.”That report’s key finding — that global emissions must fall by 45 percent by 2030 to avoid catastrophic climate disruption — generated headlines declaring that we had “12 years to save the planet.” That 12-year timeline, and the related concept of a “carbon budget” — the amount of carbon that can be burned while still limiting temperature rise to 1.5 degrees Celsius above preindustrial levels — were both rooted in this revised science. Meanwhile, the public and policy worlds have largely neglected the revised science that enabled these very estimates.

    Nonscientists can reasonably ask: What made scientists change their minds? Why should we believe their new estimate of a three-to-five-year lag time if their previous estimate of 30 to 40 years is now known to be incorrect? And does this mean the world still must cut emissions in half by 2030 to avoid climate catastrophe?

    The short answer to the last question is yes. Remember, temperatures only stop rising once global emissions fall to zero. Currently, emissions are not falling. Instead, humanity continues to pump approximately 36 billion tons of carbon dioxide a year into the atmosphere. The longer it takes to cut those 36 billion tons to zero, the more temperature rise humanity eventually will face. And as the IPCC’s 2018 report made hauntingly clear, pushing temperatures above 1.5 degrees C would cause unspeakable amounts of human suffering, economic loss and social breakdown — and perhaps trigger genuinely irreversible impacts.

    Scientists changed their minds about how much warming is locked in because additional research gave them a much better understanding of how the climate system works. Their initial 30-to-40-year estimates were based on relatively simple computer models that treated the concentration of carbon dioxide in the atmosphere as a “control knob” that determines temperature levels. The long lag in the warming impact is due to the oceans, which continue to warm long after the control knob is turned up. More recent climate models account for the more dynamic nature of carbon emissions. Yes, CO2 pushes temperatures higher, but carbon “sinks,” including forests and in particular the oceans, absorb almost half of the CO2 that is emitted, causing atmospheric CO2 levels to drop, offsetting the delayed warming effect.

    Knowing that 30 more years of rising temperatures are not necessarily locked in can be a game-changer for how people, governments and businesses respond to the climate crisis. Understanding that we can still save our civilization if we take strong, fast action can banish the psychological despair that paralyzes people and instead motivate them to get involved. Lifestyle changes can help, but that involvement must also include political engagement. Slashing emissions in half by 2030 demands the fastest possible transition away from today’s fossil-fueled economies in favor of wind, solar and other non-carbon alternatives. That can happen only if governments enact dramatically different policies. If citizens understand that things aren’t hopeless, they can better push elected officials to make such changes.

    As important as minimizing temperature rise is to the United States, where last year’s record wildfires in California and the Pacific Northwest illustrated just how deadly climate change can be, it matters most in the highly climate-vulnerable communities throughout the global South. Countless people in Bangladesh, the Philippines, Madagascar, Africa’s Sahel nations, Brazil, Honduras and other low-income countries have already been suffering from climate disasters for decades because their communities tend to be more exposed to climate impacts and have less financial capacity to protect themselves. For millions of people in such countries, limiting temperature rise to 1.5 degrees C is not a scientific abstraction.

    The IPCC’s next report, due for release Feb. 28, will address how societies can adapt to the temperature rise now underway and the fires, storms and rising seas it unleashes. If we want a livable future for today’s young people, temperature rise must be kept as close as possible to 1.5 C. The best climate science most people have never heard of says that goal remains within reach. The question is whether enough of us will act on that knowledge in time.

    Dia da Marmota: Phil prevê que frio vai continuar nos Estados Unidos (Folha de S.Paulo)

    f5.folha.uol.com.br

    2.fev.2019

    Tradição acontece desde 1887 em pequena cidade da Pensilvânia

    A marmota Phil prevê que frio vai continuar nos Estados Unidos – Alan Freed/Reuters

    Na manhã desta quarta (2), a marmota Phil viu a sua própria sombra e voltou para a sua toca. Segundo a tradição americana do Dia da Marmota, o movimento do animal significa que o frio continuará por mais seis semanas nos Estados Unidos.

    Se Phil não tivesse visto a própria sombra, significaria que o calor da primavera estaria a caminho.

    A previsão feita pela marmota é uma tradição que acontece desde 1887, sempre no dia 2 de fevereiro, na pequena cidade de Punxsutawney, na Pensilvânia. Após uma edição virtual em 2021 por causa da pandemia, neste ano o evento reuniu milhares de pessoas.

    O roedor —que é substituído e rebatizado a cada vez que um animal titular morre— acertou 50% das vezes nos últimos dez anos —ou seja, índice de acerto igual ao de uma previsão aleatória, segundo o Noaa (Centros Nacionais de Informação Ambiental, na sigla em inglês),

    O evento do Dia da Marmota foi retratado na comédia “Feitiço do Tempo“, de 1993, no qual um repórter de TV, vivido por Bill Murray, fica “preso” neste dia e é obrigado a reviver a mesma data inúmeras vezes, em sequência. Com isso, Dia da Marmota passou a ser uma forma de se referir à sensação de que os dias se repetem, situação comum na pandemia.

    A marmota Punxsutawney Phil é mostrada ao público após sair da sua toca. Alan Freed/Reuters

    Do You Know the Story Behind Naming Storms? (Word Genius)

    wordgenius.com


    Friday, October 29, 2020

    Can you imagine turning on the Weather Channel to get an update on Storm 34B-SQ59? While major storms aren’t sentient beings, it’s become standard to give them human names to make it easier to communicate about them, especially during critical news updates. From Hurricane Elsa to Tropical Storm Cristobal, there’s an intriguing legacy behind naming storms.

    The History of Naming Storms

    A few hundred years ago, storms were named after the Catholic saint’s day that lined up with the storm. For example, Hurricane Santa Ana landed in Puerto Rico on July 26, 1825. But if storms hit on the same day in different years, names doubled up. Hurricane San Felipe I struck Puerto Rico on September 13, 1876 and then San Felipe II hit in 1928.

    In the late 19th century, Australian meteorologist Clement Wragge began using women’s names for tropical storms. The practice was adopted by the U.S. Navy and Air Force during World War II when latitude and longitude identifications proved to be too cumbersome.

    Outside of the military, early 20th century storms were named and tracked by the year and order, with names such as “1940 Hurricane Two” and “1932 Tropical Storm Six.” This created some confusion when multiple storms were happening during the same time, especially during news broadcasts. To reduce confusion, United States weather services also began using female names for storms in 1953, and later added male names to the list in 1978. This began the modern version of how we name storms.

    Who Is in Charge of Storm Names?

    Although NOAA’s (National Oceanic and Atmospheric Administration) National Hurricane Center is the premier source for news about storms, this organization does not name them. Instead, the World Meteorological Organization does. The WMO is a specialized agency of the United Nations, headquartered in Switzerland, that focuses on weather, climate, and water resources. Each year, the WMO creates a list of potential names for the upcoming storm season.

    Where Do the Names Come From?

    There is a bit of an art to naming modern-day storms. The WMO compiles six lists of names for each of the three basins under its jurisdiction: Atlantic, Eastern North Pacific, and Central North Pacific. Countries outside of this jurisdiction have their own naming conventions. For areas within the WMO, such as the United States, storm names are cycled through every six years. That means that the list of names for the 2021 season will be used again in 2027.

    Each list contains 21 names that begin with a different letter of the alphabet (minus Q, U, X, Y, Z because of the limited number of names). For the Atlantic basin, names are typically chosen from English, French, and Spanish, because the countries impacted primarily speak one of those three languages. While the names are supposedly random, there are some pop culture-related coincidences, such as 2021’s Hurricane Elsa.

    When Is a Storm Named?

    A tropical storm can be named once it meets two criteria: a circular rotation and wind speeds more than 39 MPH. Once a storm reaches 74 MPH, it becomes a hurricane but keeps the same name it was first given as a tropical storm, such as when Tropical Storm Larry turned into Hurricane Larry in September 2021.

    Hurricane names can also be retired, and this is often done when a hurricane is especially destructive. As of the 2020 season, there are 93 names on the retired Atlantic hurricane list, including 2004’s Katrina, 2012’s Sandy, and 2016’s Matthew. When a name is retired, it is replaced with a new name.

    New Rules in 2021

    Before the 2021 season, if the full list of storm names was used before the end of the season, any additional storms that reached the necessary criteria for naming would use the Greek alphabet — Alpha, Beta, Gamma, etc. There were 30 named storms in 2020, only the second time the full list of names had been used.

    As of 2021, the WMO will use a supplementary list of names, similar to the original list (starting with Adria and ending with Will). The WMO felt that the Greek names were too distracting. From a technical perspective, the Greek names could also not be replaced in a way that made sense if they were retired (such as Eta and Iota in 2020).

    Featured image credit: Julia_Sudnitskaya/ iStock

    Trust in meteorology has saved lives. The same is possible for climate science. (Washington Post)

    washingtonpost.com

    Placing our faith in forecasting and science could save lives and money

    Oliver Uberti

    October 14, 2021


    2021 is shaping up to be a historically busy hurricane season. And while damage and destruction have been serious, there has been one saving grace — that the National Weather Service has been mostly correct in its predictions.

    Thanks to remote sensing, Gulf Coast residents knew to prepare for the “life-threatening inundation,” “urban flooding” and “potentially catastrophic wind damage” that the Weather Service predicted for Hurricane Ida. Meteorologists nailed Ida’s strength, surge and location of landfall while anticipating that a warm eddy would make her intensify too quickly to evacuate New Orleans safely. Then, as her remnants swirled northeast, reports warned of tornadoes and torrential rain. Millions took heed, and lives were saved. While many people died, their deaths resulted from failures of infrastructure and policy, not forecasting.

    The long history of weather forecasting and weather mapping shows that having access to good data can help us make better choices in our own lives. Trust in meteorology has made our communities, commutes and commerce safer — and the same is possible for climate science.

    Two hundred years ago, the few who studied weather deemed any atmospheric phenomenon a “meteor.” The term, referencing Aristotle’s “Meteorologica,” essentially meant “strange thing in the sky.” There were wet things (hail), windy things (tornadoes), luminous things (auroras) and fiery things (comets). In fact, the naturalist Elias Loomis, who was among the first to spot Halley’s comet upon its return in 1835, thought storms behaved as cyclically as comets. So to understand “the laws of storms,” Loomis and the era’s other leading weatherheads began gathering observations. Master the elements, they reasoned, and you could safely sail the seas, settle the American West, plant crops with confidence and ward off disease.

    In 1856, Joseph Henry, the Smithsonian Institution’s first director, hung a map of the United States in the lobby of its Washington headquarters. Every morning, he would affix small colored discs to show the nation’s weather: white for places with clear skies, blue for snow, black for rain and brown for cloud cover. An arrow on each disc allowed him to note wind direction, too. For the first time, visitors could see weather across the expanding country.

    Although simple by today’s standards, the map belied the effort and expense needed to select the correct colors each day. Henry persuaded telegraph companies to transmit weather reports every morning at 10. Then he equipped each station with thermometers, barometers, weathervanes and rain gauges — no small task by horse and rail, as instruments often broke in transit.

    For longer-term studies of the North American climate, Henry enlisted academics, farmers and volunteers from Maine to the Caribbean. Eager to contribute, “Smithsonian observers” took readings three times a day and posted them to Washington each month. At its peak in 1860, the Smithsonian Meteorological Project had more than 500 observers. Then the Civil War broke out.

    Henry’s ranks thinned by 40 percent as men traded barometers for bayonets. Severed telegraph lines and the priority of war messages crippled his network. Then in January 1865, a fire in Henry’s office landed the fatal blow to the project. All of his efforts turned to salvaging what survived. With a vacuum of leadership in Washington, citizen scientists picked up the slack.

    Although the Chicago Tribune lampooned Lapham, wondering “what practical value” a warning service would provide “if it takes 10 years to calculate the progress of a storm,” Rep. Halbert E. Paine (Wis.), who had studied storms under Loomis, rushed a bill into Congress before the winter recess. In early 1870, a joint resolution establishing a storm-warning service under the U.S. Army Signal Office passed without debate. President Ulysses S. Grant signed it into law the following week.

    Despite the mandate for an early-warning system, an aversion to predictions remained. Fiscal hawks could not justify an investment in erroneous forecasts, religious zealots could not stomach the hubris, and politicians wary of a skeptical public could not bear the fallout. In 1893, Agriculture Secretary J. Sterling Morton cut the salary of one of the country’s top weather scientists, Cleveland Abbe, by 25 percent, making an example out of him.

    While Moore didn’t face consequences for his dereliction of duty, the Weather Bureau’s hurricane-forecasting methods gradually improved as the network expanded and technologies like radio emerged. The advent of aviation increased insight into the upper atmosphere; military research led to civilian weather radar, first deployed at Washington National Airport in 1947. By the 1950s, computers were ushering in the future of numerical forecasting. Meanwhile, public skepticism thawed as more people and businesses saw it in their best interests to trust experts.

    In September 1961, a local news team decided to broadcast live from the Weather Bureau office in Galveston, Tex., as Hurricane Carla angled across the Gulf of Mexico. Leading the coverage was a young reporter named Dan Rather. “There is the eye of the hurricane right there,” he told his audience as the radar sweep brought the invisible into view. At the time, no one had seen a radar weather map televised before.

    Rather realized that for viewers to comprehend the storm’s size, location and imminent danger, people needed a sense of scale. So he had a meteorologist draw the Texas coast on a transparent sheet of plastic, which Rather laid over the radarscope. Years later, he recalled that when he said “one inch equals 50 miles,” you could hear people in the studio gasp. The sight of the approaching buzz saw persuaded 350,000 Texans to evacuate their homes in what was then the largest weather-related evacuation in U.S. history. Ultimately, Carla inflicted twice as much damage as the Galveston hurricane 60 years earlier. But with the aid of Rather’s impromptu visualization, fewer than 50 lives were lost.

    In other words, weather forecasting wasn’t only about good science, but about good communication and visuals.

    Data visualization helped the public better understand the weather shaping their lives, and this enabled them to take action. It also gives us the power to see deadly storms not as freak occurrences, but as part of something else: a pattern.

    A modified version of a chart that appears in “Atlas of the Invisible: Maps and Graphics That Will Change How You See the World.” Copyright © 2021 by James Cheshire and Oliver Uberti. With permission of the publisher, W.W. Norton & Co. All rights reserved.

    Two hundred years ago, a 10-day forecast would have seemed preposterous. Now we can predict if we’ll need an umbrella tomorrow or a snowplow next week. Imagine if we planned careers, bought homes, built infrastructure and passed policy based on 50-year forecasts as routinely as we plan our weeks by five-day ones.

    Unlike our predecessors of the 19th or even 20th centuries, we have access to ample climate data and data visualization that give us the knowledge to take bold actions. What we do with that knowledge is a matter of political will. It may be too late to stop the coming storm, but we still have time to board our windows.

    Clima nos apavora justamente quando conseguimos sobreviver a ele (Folha de S.Paulo)

    Luta contra o aquecimento global precisa de inovadores, e não de ativistas obcecados com o apocalipse

    Leandro Narloch – artigo original aqui.

    11.ago.2021 às 8h56

    Na sua opinião, o que aconteceu nos últimos cem anos com o número total de mortes causadas por furacões, inundações, secas, ondas de calor e outros desastres climáticos? Peço que escolha uma destas alternativas:

    • a) Aumentou mais de 800%
    • b) Aumentou cerca de 50%
    • c) Manteve-se constante
    • d) Diminuiu cerca de 50%
    • e) Diminuiu mais de 80%

    Como a população mundial cresceu de 1,8 bilhão em 1921 para 8 bilhões em 2021, é razoável cravar as respostas B ou C, pois o fato de haver mais pessoas resultaria em mais vítimas. Muitos leitores devem ter escolhido a primeira opção, tendo em vista as notícias assustadoras do relatório do IPCC desta semana.

    A alternativa correta, porém, é a última. As mortes por desastres naturais diminuíram 87% desde a década de 1920 até os anos 2010, segundo dados coletados pelo Our World in Data.

    Passaram de 540 mil por ano para 68 mil. A taxa em relação à população teve picos de 63 mortes por 100 mil habitantes em 1921, e 176 em 1931. Hoje está em 0,15.

    Esses números levam a dois paradoxos interessantes sobre a relação entre o homem e o clima. O primeiro lembra o Paradoxo de Spencer –referência a Herbert Spencer, para quem “o grau de preocupação pública sobre um problema ou fenômeno social varia inversamente a sua incidência”.

    Assim como os ingleses se deram conta da pobreza quando ela começava a diminuir, durante a Revolução Industrial, a humanidade está apavorada com os infortúnios do clima justamente depois de conseguir sobreviver a eles.

    O segundo paradoxo: ao mesmo tempo em que emitimos muito (mas muito mesmo) carbono na atmosfera e causamos um grave problema de efeito estufa, também nos tornamos menos vulneráveis à natureza. Na verdade, proteger-se do clima foi um dos principais motivos para termos poluído tanto.

    Veja o caso da construção. Produzir cimento consiste grosseiramente em queimar calcário e liberar dióxido de carbono.

    Se a indústria de cimento fosse um país, seria o terceiro maior emissor de gases do efeito estufa. Mas essa indústria poluidora permitiu que as pessoas deixassem casas de pau-a-pique ou madeira para dormirem abrigadas em estruturas mais seguras.

    Já a fome originada pela seca, principal causa de morte por desastres naturais nos anos 1920, foi resolvida com a criação dos fertilizantes químicos, sistemas de irrigação e a construção de represas e redes de saneamento.

    Todas essas atividades causaram aquecimento global –mas não deixam de ser grandes conquistas humanas, que merecem ser celebradas e difundidas entre os pobres que ainda vivem sob risco de morrer durante furacões, secas ou inundações.

    Será que a queda histórica das mortes por desastres naturais vai se reverter nos próximos anos, tornando realidade os vaticínios apocalípticos de Greta Thunberg, para quem “bilhões de pessoas morrerão se não tomarmos medidas urgentes”?

    O ativista climático Michael Shellenberger, autor do brilhante “Apocalipse Nunca”, que será lançado este mês no Brasil pela editora LVM, acha que não.

    Pretendo falar mais sobre o livro de Shellenberger em outras colunas, mas já adianto um dos argumentos: o alarmismo ambiental despreza a capacidade humana de se adaptar e resolver problemas.

    “Os Países Baixos, por exemplo, tornaram-se uma nação rica mesmo tendo um terço de suas terras abaixo do nível do mar, incluindo áreas que estão nada menos do que sete metros abaixo do mar”, diz ele.

    A luta contra o aquecimento global não precisa de ativistas obcecados com o apocalipse (que geralmente desprezam soluções óbvias, como a energia nuclear). Precisa de tecnologia, de inovadores, de gente que dê mais conforto e segurança à humanidade interferindo na natureza cada vez menos.

    Previsão atualizada confirma temperatura de -0ºC em SP e neve no Sul (Cajamar Notícias)

    [Previsão do tempo e previsão de mortes. Observar reação do poder público municipal.]

    Se confirmada, a onda de frio será a maior do século, com geada generalizada e temperaturas negativas, o que pode provocar até morte. 25 de julho de 2021

    Mapa mostra a intensidade da nova onda de frio e sua abrangência.

    A última atualização dos modelos meteorológicos continuam mantendo a previsão de temperaturas negativas nos três Estados do Sul do Brasil e em áreas do Estado de São Paulo e Sul de Minas Gerais. A fortíssima massa de ar polar poderá ser a mais forte do século e causar prejuízos na agricultura e até mesmo morte de pessoas em situação de vulnerabilidade.

    A FRENTE FRIA – SUL

    A frente fria que antecede a massa polar vai entrar no Brasil pelo Estado do Rio Grande do Sul na segunda-feira, dia 26, provocando chuva e acentuada queda de temperatura. No dia 27, terça-feira, a chuva já chega em Santa Cataria e no Paraná, fazendo a temperatura despencar rapidamente. Nas serras e áreas de planalto dos três Estados, a temperatura mínima já pode chegar a zero grau.

    Na quarta, quinta, sexta e sábado, dias 28,29,30 e 31, praticamente todas as regiões do Sul do Brasil, exceto litoral, terão temperaturas negativas com possibilidade de geada negra, que pode matar a vegetação, provocando sérios prejuízos à agricultura.

    NEVE

    Os modelos meteorológicos mantém a chance alta de neve nas serras do Rio Grande do Sul, Santa Catarina e até mesmo no planalto sul do Paraná, entre a noite de quarta-feira (28) e madrugada de quinta-feira (29), atingindo cidades, tais como: Canela/RS, Caxias do Sul/RS, São Joaquim/SC, Urupema/SC, Caçador/SC e Cruz Machado/PR. Confira o mapa abaixo:

    Mapa mostra a região com chance de neve na madrugada de quinta-feira (29).

    A FRENTE FRIA – SÃO PAULO

    Na quarta-feira, dia 28, é a vez do Estado de São Paulo experimentar a volta da chuva, que não cairá em todas as regiões, mas manterá o céu nublado com ventos gélidos e temperatura máxima entre 17ºC e 18ºC enquanto as mínimas ficarão entre 5ºC a 10ºC na Grande São Paulo.

    Na quinta-feira, dia 29, o Estado de São Paulo já vai amanhecer com muito frio. Temperaturas entre 1ºC e 7ºC serão registradas em toda a Grande São Paulo, Vale do Paraíba, Vale do Ribeira, regiões de Sorocaba, Bauru, Presidente Prudente e Campinas, conforme mapa abaixo:

    Temperaturas previstas para o amanhecer de quinta-feira, dia 29 de julho, na Grande São Paulo, Vale do Paraíba e Ribeira, regiões de Campinas, Sorocaba, Bauru e Bragança Paulista.

    SEXTA-FEIRA – O ‘PICO’ DO FRIO

    A sexta-feira, dia 30 de julho de 2021, deverá ficar marcada na história da meteorologia. Se confirmada, será o dia mais frio do século, com geada generalizada no Estado de São Paulo e temperaturas negativas em várias regiões, o que pode provocar a morte de moradores de rua e/ou pessoas em vulnerabilidade.

    Em praticamente todas as regiões do Estado de São Paulo, os modelos atuais indicam temperaturas negativas, conforme mapa baixo: (ATENÇÃO: As previsões podem mudar com o passar dos dias, essa é a indicação atual publicada no domingo, dia 25).

    Mapa mostra o tamanho da massa de ar frio e temperatura prevista para o dia 30 a 1500 metros de altitude, com inacreditáveis -10ºC em áreas do Sul e faixa leste de São Paulo e até -5ºC nas demais regiões de São Paulo, Rio de Janeiro, sul e leste de Minas, Mato Grosso do Sul, Mato Grosso e Rondônia.

    It’s so hot in Dubai the government is paying scientists to make it rain (Wasington Post)

    washingtonpost.com

    Jonathan Edwards – July 21, 2021

    Sunlight reflects off the Burj Khalifa, the world’s tallest building, during a rain shower in Dubai in 2018. (Jon Gambrell/AP)

    Facing a hotter future, dwindling water sources and an exploding population, scientists in one Middle East country are making it rain.

    United Arab Emirates meteorological officials released a video this week of cars driving through a downpour in Ras al Khaimah in the northern part of the country. The storm was the result of one of the UAE’s newest efforts to increase rainfall in a desert nation that gets about four inches a year on average.

    Washington, D.C., in contrast, has averaged nearly 45 inches of rain annually for the past decade.

    Scientists created rainstorms by launching drones, which then zapped clouds with electricity, the Independent reports. Jolting droplets in the clouds can cause them to clump together, researchers found. The larger raindrops that result then fall to the ground, instead of evaporating midair — which is often the fate of smaller droplets in the UAE, where temperatures are hot and the clouds are high.

    “What we are trying to do is to make the droplets inside the clouds big enough so that when they fall out of the cloud, they survive down to the surface,” meteorologist and researcher Keri Nicoll told CNN in May as her team prepared to start testing the drones near Dubai.

    Nicoll is part of a team of scientists with the University of Reading in England whose research led to this week’s man-made rainstorms. In 2017, the university’s scientists received $1.5 million for use over three years from the UAE Research Program for Rain Enhancement Science, which has invested in at least nine different research projects over the past five years.

    To test their research, Nicoll and her team built four drones with wingspans of about 6½ feet. The drones, which are launched from a catapult, can fly for about 40 minutes, CNN reported. During flight, the drone’s sensors measure temperature, humidity and electrical charge within a cloud, which lets the researchers know when and where they need to zap.

    Water is a big issue in the UAE. The country uses about 4 billion cubic meters of it each year but has access to about 4 percent of that in renewable water resources, according to the CIA. The number of people living in the UAE has skyrocketed in recent years, doubling to 8.3 million between 2005 and 2010, which helps explain why demand for water spiked by a third around that time, according to the government’s 2015 “State of Environment” report. The population kept surging over the next decade and is now 9.9 million.

    “The water table is sinking drastically in [the] UAE,” University of Reading professor and meteorologist Maarten Ambaum told BBC News, “and the purpose of this [project] is to try to help with rainfall.”

    It usually rains just a few days out of the year in the UAE. During the summer, there’s almost no rainfall. Temperatures there recently topped 125 degrees.

    In recent years, the UAE’s massive push into desalination technology — which transforms seawater into freshwater by removing the salt — has helped close the gap between the demand for water and supply. Most of the UAE’s drinkable water, and 42 percent of all water used in the country, comes from its roughly 70 desalination plants, according to the UAE government.

    Still, part of the government’s “water security strategy” is to lower demand by 21 percent in the next 15 years.

    Ideas to get more water for the UAE have not lacked imagination. In 2016, The Washington Post reported government officials were considering building a mountain to create rainfall. As moist air reaches a mountain, it is forced upward, cooling as it rises. The air can then condense and turn into liquid, which falls as rain.

    Estimates for another mountain-building project in the Netherlands came in as high as $230 billion.

    Other ideas for getting more water to the UAE have included building a pipeline from Pakistan and floating icebergs down from the Arctic.

    Study finds humans are directly influencing wind and weather over North Atlantic (EurekaAlert!)

    News Release 17-Apr-2021

    The findings suggest that winters in Europe and in eastern US may get warmer and wetter

    University of Miami Rosenstiel School of Marine & Atmospheric Science

    Research News

    IMAGE
    IMAGE: The Positive NAO index phase shows a stronger than usual subtropical high pressure center and a deeper than normal Icelandic low. The increased pressure difference results in more and stronger… view more  Credit: Columbia University Lamont-Doherty Earth Observatory.

    MIAMI–A new study led by scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science provides evidence that humans are influencing wind and weather patterns across the eastern United States and western Europe by releasing CO2 and other pollutants into Earth’s atmosphere.

    In the new paper, published in the journal npj Climate and Atmospheric Science, the research team found that changes in the last 50 years to an important weather phenomenon in the North Atlantic–known as the North Atlantic Oscillation–can be traced back to human activities that impact the climate system.

    “Scientists have long understood that human actions are warming the planet,” said the study’s lead author Jeremy Klavans, a UM Rosenstiel School alumnus. “However, this human-induced signal on weather patterns is much harder to identify.”

    “In this study, we show that humans are influencing patterns of weather and climate over the Atlantic and that we may be able to use this information predict changes in weather and climate up to a decade in advance,” said Klavans.

    The North Atlantic Oscillation, the result of fluctuations in air pressure across the Atlantic, affects weather by influencing the intensity and location of the jet stream. This oscillation has a strong effect on winter weather in Europe, Greenland, the northeastern U.S. and North Africa and the quality of crop yields and productivity of fisheries in the North Atlantic.

    The researchers used multiple large climate model ensembles, compiled by researchers at the National Center for Atmospheric Research, to predict the North Atlantic Oscillation. The analysis consisted of 269 model runs, which is over 14,000 simulated model years.

    The study, titled “NAO Predictability from External Forcing in the Late Twentieth Century,” was published on March 25 in the journal npj Climate and Atmospheric Science. The study’s authors include: Klavans, Amy Clement and Lisa Murphy from the UM Rosenstiel School, and Mark Cane from Columbia University’s Lamont-Doherty Earth Observatory.

    The study was supported by the National Science Foundation (NSF) Climate and Large-Scale Dynamics program (grant # AGS 1735245 and AGS 1650209), NSF Paleo Perspectives on Climate Change program (grant # AGS 1703076) and NOAA’s Climate Variability and Predictability Program.