Quanto mais específicos e precisos forem os dados atmosféricos coletados na área observada, mais precisa será a probabilidade.
Rafael Abuchaibe
29 de abril de 2023
Se você é daqueles que não sai de casa sem antes conferir a previsão do tempo, certamente já se perguntou por que a porcentagem de chuva oferecida pela maioria dos serviços de meteorologia nem sempre corresponde ao que você vê pela janela.
“Porque representa as chances de chover na sua cidade“, alguém já deve ter respondido, quase surpreso com o quão básica parecia ser a resposta à sua pergunta:
“E as estatísticas nunca são 100% precisas.”
Outros, tendo indagado um pouco mais sobre o assunto, podem ter dito que o que o percentual representa é a área do território em que vai chover durante um determinado período de tempo (por exemplo, “das 9h às 12h”).
E para colocar mais lenha na fogueira, você deve ter visto alguns vídeos do TikTok explicando que o que a porcentagem reflete é a certeza dos meteorologistas de que vai chover em uma determinada área, com base em medições de fatores como temperatura, pressão atmosférica e velocidade do vento.
Diante de explicações tão variadas e distintas para algo que parece ser tão simples, a BBC News Mundo, serviço de notícias em espanhol da BBC, resolveu buscar uma explicação mais exata para o que aquele número representa —e percebeu que, de certa forma, todo mundo tem razão.
Probabilidade de precipitação
Para poder estabelecer o que essa porcentagem realmente significa, vamos começar revisando a definição dada pelo Serviço Meteorológico dos EUA:
“A probabilidade de precipitação representa simplesmente a probabilidade estatística de que haja 0,01 polegadas [0,25 mm] ou mais de precipitação [seja chuva, neve ou granizo] em uma determinada área dentro do período de tempo especificado.”
A porcentagem leva em consideração diferentes fatores para expressar em um valor estatístico a probabilidade de ocorrer precipitação em um determinado ponto.
“Vejamos um exemplo do que essa probabilidade significa”, diz o serviço meteorológico em sua definição.
“Se a previsão para um determinado distrito diz que há 40% de probabilidade de chuva para esta tarde, isso significa que há 40% de chance de chover em algum lugar do distrito entre meio-dia e 18h”, acrescenta.
Com base nessa definição, quanto mais específicos e precisos forem os dados atmosféricos coletados na área observada, mais preciso será o percentual de probabilidade.
Isso explica por que os dados fornecidos por diferentes serviços meteorológicos variam (embora não muito).
Duas medições, mesmo resultado
Para poder fazer uma previsão, um analista meteorológico multiplica dois fatores: a certeza que tem de que um sistema de precipitação vai se formar ou se aproximar, calculado por meio de medições atmosféricas, pela extensão —área física— que se espera que tal precipitação tenha no território analisado.
A esse resultado, basta mover duas casas decimais, e a probabilidade de precipitação é obtida.
Isso indica que é possível chegar à mesma porcentagem de precipitação tendo valores diferentes para cada fator.
Para ver essa ideia na prática, vamos voltar ao nosso exemplo do distrito com 40% de probabilidade de precipitação: se um analista tivesse 80% de certeza de que vai chover naquele distrito (medindo a velocidade do vento, a temperatura do ar, a umidade etc.), mas só espera que o sistema de precipitação cubra 50% da área, ele dirá que há uma “probabilidade de 40% de chuva” durante esse período de tempo.
Por outro lado, se outro analista estimasse que a precipitação iria cobrir 100% da área analisada, mas só tivesse 40% de certeza de que essa precipitação iria atingir o distrito, ele obteria o mesmo resultado: “40% de probabilidade de chuva em qualquer ponto do distrito durante esse período de tempo.”
Pequenas variações entre os sistemas
Cada meteorologista terá seus próprios modelos de medição e coleta de dados para calcular a probabilidade de precipitação nos locais que analisa —e alguns serão mais precisos que outros.
O importante é identificar o quão precisos são os métodos de coleta de dados atmosféricos que cada serviço possui na área específica em que você se encontra, algo que pode ser feito comparando-os e analisando qual deles se adequa melhor à realidade que você observa pela janela.
E, claro, não se pode esquecer que, por se basear em modelos probabilísticos, a meteorologia está longe de ser infalível.
Se você confiar apenas na previsão do tempo, é inevitável que um dia, por melhor que seja o sistema que usa, você saia de casa sem guarda-chuva com base na previsão do aplicativo —e seja pego na rua por um temporal.
Technologically speaking, we live in a time of plenty. Today, I can ask a chatbot to render TheCanterbury Tales as if written by Taylor Swift or to help me write a factually inaccurate autobiography. With three swipes, I can summon almost everyone listed in my phone and see their confused faces via an impromptu video chat. My life is a gluttonous smorgasbord of information, and I am on the all-you-can-eat plan. But there is one specific corner where technological advances haven’t kept up: weather apps.
Weather forecasts are always a game of prediction and probabilities, but these apps seem to fail more often than they should. At best, they perform about as well as meteorologists, but some of the most popular ones fare much worse. The cult favorite Dark Sky, for example, which shut down earlier this year and was rolled into the Apple Weather app, accurately predicted the high temperature in my zip code only 39 percent of the time, according to ForecastAdvisor, which evaluates online weather providers. The Weather Channel’s app, by comparison, comes in at 83 percent. The Apple app, although not rated by ForecastAdvisor, has a reputation for off-the-mark forecasts and has been consistently criticized for presenting faulty radar screens, mixing up precipitation totals, or, as it did last week, breaking altogether. Dozens of times, the Apple Weather app has lulled me into a false sense of security, leaving me wet and betrayed after a run, bike ride, or round of golf.
People love to complain about weather forecasts, dating back to when local-news meteorologists were the primary source for those planning their morning commutes. But the apps have produced a new level of frustration, at least judging by hundreds of crankytweets over the past decade. Nearly two decades into the smartphone era—when anyone can theoretically harness the power of government weather data and dissect dozens of complex, real-time charts and models—we are still getting caught in the rain.
Weather apps are not all the same. There are tens of thousands of them, from the simply designed Apple Weather to the expensive, complex, data-rich Windy.App. But all of these forecasts are working off of similar data, which are pulled from places such as the National Oceanic and Atmospheric Administration (NOAA) and the European Centre for Medium-Range Weather Forecasts. Traditional meteorologists interpret these models based on their training as well as their gut instinct and past regional weather patterns, and different weather apps and services tend to use their own secret sauce of algorithms to divine their predictions. On an average day, you’re probably going to see a similar forecast from app to app and on television. But when it comes to how people feel about weather apps, these edge cases—which usually take place during severe weather events—are what stick in a person’s mind. “Eighty percent of the year, a weather app is going to work fine,” Matt Lanza, a forecaster who runs Houston’s Space City Weather, told me. “But it’s that 20 percent where people get burned that’s a problem.”
No people on the planet have a more tortured and conflicted relationship with weather apps than those who interpret forecasting models for a living. “My wife is married to a meteorologist, and she will straight up question me if her favorite weather app says something different than my forecast,” Lanza told me. “That’s how ingrained these services have become in most peoples’ lives.” The basic issue with weather apps, he argues, is that many of them remove a crucial component of a good, reliable forecast: a human interpreter who can relay caveats about models or offer a range of outcomes instead of a definitive forecast.
Lanza explained the human touch of a meteorologist using the example of a so-called high-resolution forecasting model that can predict only 18 hours out. It is generally quite good, he told me, at predicting rain and thunderstorms—“but every so often it runs too hot and over-indexes the chances of a bad storm.” This model, if left to its own devices, will project showers and thunderstorms blanketing the region for hours when, in reality, the storm might only cause 30 minutes of rain in an isolated area of the mapped region. “The problem is when you take the model data and push it directly into the app with no human interpretation,” he said. “Because you’re not going to get nuance from these apps at all. And that can mean a difference between a chance of rain all day and it’s going to rain all day.”
But even this explanation has caveats; all weather apps are different, and their forecasts have varying levels of sophistication. Some pipe model data right in, whereas others are curated using artificial intelligence. Peter Neilley, the Weather Channel’s director of weather forecasting sciences and technologies, said in an email that the company’s app incorporates “billions of weather data points,” adding that “our expert team of meteorologists does oversee and correct the process as needed.”
Weather apps might be less reliable for another reason too. When it comes to predicting severe weather such as snow, small changes in atmospheric moisture—the type of change an experienced forecaster might notice—can cause huge variances in precipitation outcomes. An app with no human curation might choose to average the model’s range of outcomes, producing a forecast that doesn’t reflect the dynamic situation on the ground. Or consider cities with microclimates: “Today, in Chicago, the lakefront will sit in the lower 40s, and the suburbs will be 50-plus degrees,” Greg Dutra, a meteorologist at ABC 7 Chicago, told me. “Often, the difference is even more stark—20-degree swings over just miles.” These sometimes subtle temperature disparities can mean very different forecasts for people living in the same region—something that one-size-fits-all weather apps don’t always pick up.
Naturally, meteorologists think that what they do is superior to forecasting by algorithm alone, but even weather-app creators told me that the challenges are real. “It’s impossible for a weather-data provider to be accurate everywhere in the world,” Brian Mueller, the founder of the app Carrot Weather, told me. His solution to the problem of app-based imprecision is to give users more ability to choose what they see when they open Carrot, letting them customize what specific weather information the app surfaces as well as what data sources the app will draw from. Mueller said that he learned from Dark Sky’s success how important beautiful, detailed radar maps were—both as a source of weather data and for entertainment purposes. In fact, meteorology seems to be only part of the allure when it comes to building a beloved weather app. Carrot has a pleasant design interface, with bright colors and Easter eggs scattered throughout, such as geography challenges based off of its weather maps. He’s also hooked Carrot up to ChatGPT to allow people to chat with the app’s fictional personality.
But what if these detailed models and dizzying maps, in the hands of weather rubes like myself, are the real problem? “The general public has access to more weather information than ever, and I’d posit that that’s a bad thing,” Chris Misenis, a weather-forecasting consultant in North Carolina who goes by the name “Weather Moose,” told me. “You can go to PivotalWeather.com right now and pull up just about any model simulation you want.” He argues that these data are fine to look at if you know how to interpret them, but for people who aren’t trained to analyze them, they are at best worthless and at worst dangerous.
In fact, forecasts are better than ever, Andrew Blum, a journalist and the author of the book The Weather Machine: A Journey Inside the Forecast, told me. “But arguably, we are less prepared to understand,” he said, “and act upon that improvement—and a forecast is only as good as our ability to make decisions with it.” Indeed, even academic research around weather apps suggests that apps fail worst when they give users a false sense of certainty around forecasting. A 2016 paper for the Royal Meteorological Society argued that “the current way of conveying forecasts in the most common apps is guilty of ‘immodesty’ (‘not admitting that sometimes predictions may fail’) and ‘impoverishment’ (‘not addressing the broader context in which forecasts … are made’).”
The conflicted relationship that people have with weather apps may simply be a manifestation of the information overload that dominates all facets of modern life. These products grant anyone with a phone access to an overwhelming amount of information that can be wildly complex. Greg Dutra shared one such public high-resolution model from the NOAA with me that was full of indecipherable links to jargony terms such as “0-2 km max vertical vorticity.” Weather apps seem to respond mostly to this fire hose of data in two ways: By boiling them down to a reductive “partly sunny” icon, or by bombarding the user with information they might not need or understand. At its worst, a modern weather app seems to flatter people, entrusting them to do their own research even if they’re not equipped. I’m not too proud to admit that some of the fun of toying around with Dark Sky’s beautiful radar or Windy.App’s endless array of models is the feeling of role-playing as a meteorologist. But the truth is that I don’t really know what I’m looking at.
What people seem to be looking for in a weather app is something they can justify blindly trusting and letting into their lives—after all, it’s often the first thing you check when you roll over in bed in the morning. According to the 56,400 ratings of Carrot in Apple’s App Store, its die-hard fans find the app entertaining and even endearing. “Love my psychotic, yet surprisingly accurate weather app,” one five-star review reads. Although many people need reliable forecasting, true loyalty comes from a weather app that makes people feel good when they open it.
Our weather-app ambivalence is a strange pull between feeling grateful for instant access to information and simultaneously navigating a sense of guilt and confusion about how the experience is also, somehow, dissatisfying—a bit like staring down Netflix’s endless library and feeling as if there’s nothing to watch. Weather apps aren’t getting worse. In fact they’re only getting more advanced, inputting more and more data and offering them to us to consume. Which, of course, might be why they feel worse.
Menos de 2% das três bilhões de letras do genoma humano são dedicados às proteínas
David Cox
17 de abril de 2023
Em abril de 2003, o sequenciamento completo do “livro da vida” codificado no genoma humano foi declarado “encerrado”, após 13 anos de trabalho. O mundo estava repleto de expectativas.
Esperava-se que o Projeto Genoma Humano, depois de consumir cerca de US$ 3 bilhões (R$ 15 bilhões), trouxesse tratamentos para doenças crônicas e esclarecesse todos os detalhes determinados geneticamente sobre as nossas vidas.
Mas, enquanto as entrevistas coletivas anunciavam o triunfo desta nova era de conhecimento biológico, o manual de instruções para a vida humana já trazia consigo uma surpresa inesperada.
A convicção que prevalecia na época era que a ampla maioria do genoma humano consistiria de instruções para a produção de proteínas — os “tijolos” que constroem todos os organismos vivos e desempenham uma imensa variedade de papéis nas nossas células e entre elas.
E, com mais de 200 tipos diferentes de células no corpo humano, parecia fazer sentido que cada uma delas precisasse dos seus próprios genes para realizar suas funções necessárias.
Acreditava-se que o surgimento de conjuntos exclusivos de proteínas fosse vital na evolução da nossa espécie e dos nossos poderes cognitivos. Afinal, somos a única espécie capaz de sequenciar o nosso próprio genoma.
Mas o que descobrimos é que menos de 2% dos três bilhões de letras do genoma humano são dedicados às proteínas. Apenas cerca de 20 mil genes codificadores de proteínas foram encontrados nas longas linhas de moléculas que compõem nossas sequências de DNA.
Os geneticistas ficaram assombrados ao descobrir que os números de genes produtores de proteínas dos seres humanos são similares a algumas das criaturas mais simples do planeta. As minhocas, por exemplo, têm cerca de 20 mil desses genes, enquanto as moscas-das-frutas têm cerca de 13 mil.
Foi assim que, do dia para a noite, o mundo científico passou a enfrentar uma verdade bastante incômoda: grande parte do nosso entendimento sobre o que nos torna seres humanos talvez estivesse errada.
“Eu me lembro da incrível surpresa”, afirma o biólogo molecular Samir Ounzain, principal executivo da companhia suíça Haya Therapeutics. A empresa procura utilizar nosso conhecimento sobre a genética humana para desenvolver novos tratamentos para doenças cardiovasculares, câncer e outras enfermidades crônicas.
“Aquele foi o momento em que as pessoas começaram a se perguntar ‘será que temos um conceito errado do que é a biologia?'”
Os 98% restantes do nosso DNA ficaram conhecidos como matéria escura, ou o genoma obscuro — uma enorme e misteriosa quantidade de letras sem propósito ou significado óbvio.
Inicialmente, alguns geneticistas sugeriram que o genoma obscuro fosse simplesmente DNA lixo, uma espécie de depósito de resíduos da evolução humana. Seriam os restos de genes partidos que deixaram de ser relevantes há muito tempo.
Mas, para outros, sempre ficou claro que o genoma obscuro seria fundamental para nosso entendimento da humanidade.
“A evolução não tem absolutamente nenhuma tolerância com o lixo”, afirma Kári Stefánsson, o principal executivo da empresa islandesa deCODE Genetics, que sequenciou mais genomas inteiros do que qualquer outra instituição em todo o mundo.
Para ele, “deve haver uma razão evolutiva para manter o tamanho do genoma”.
Duas décadas se passaram e, agora, temos os primeiros indícios da função do genoma obscuro. Aparentemente, sua função primária é regular o processo de decodificação, ou expressão, dos genes produtores de proteínas.
O genoma obscuro ajuda a controlar o comportamento dos nossos genes em resposta às pressões ambientais enfrentadas pelo nosso corpo ao longo da vida, que vão desde a alimentação até o estresse, a poluição, os exercícios e a quantidade de sono. Este campo é conhecido como epigenética.
Ounzain afirma que gosta de pensar nas proteínas como o hardware que compõe a vida. Já o genoma obscuro é o software, que processa e reage às informações externas.
Por isso, quanto mais aprendemos sobre o genoma obscuro, mais compreendemos a complexidade humana e como nos tornamos quem somos hoje.
“Se você pensar em nós enquanto espécie, somos mestres da adaptação ao ambiente em todos os níveis”, afirma Ounzain. “E essa adaptação é o processamento das informações.”
“Quando você retorna à questão sobre o que nos faz ser diferentes de uma mosca ou de uma minhoca, percebemos cada vez mais que as respostas estão no genoma obscuro”, segundo ele.
Os transposons e o nosso passado evolutivo
Quando os cientistas começaram a examinar o livro da vida, em meados dos anos 2000, uma das maiores dificuldades foi o fato de que as regiões não codificadoras de proteínas do genoma humano pareciam estar repletas de sequências de DNA repetidas, conhecidas como transposons.
Essas sequências repetitivas eram tão onipresentes que compreendiam cerca da metade do genoma em todos os mamíferos vivos.
“A própria compilação do primeiro genoma humano foi mais problemática devido à presença dessas sequências repetitivas”, afirma Jef Boeke, diretor do centro médico acadêmico chamado Projeto Matéria Escura da Universidade Langone de Nova York, nos Estados Unidos.
“Analisar simplesmente qualquer tipo de sequência é muito mais fácil quando se trata de uma sequência exclusiva.”
Inicialmente, os transposons foram ignorados pelos geneticistas. A maior parte dos estudos genéticos preferiu concentrar-se puramente no exoma — a pequena região codificadora de proteínas do genoma.
Mas, ao longo da última década, o desenvolvimento de tecnologias mais sofisticadas de sequenciamento de DNA permitiu aos geneticistas estudar o genoma obscuro com mais detalhes.
Em um desses experimentos, os pesquisadores excluíram um fragmento específico de transposon de camundongos, o que fez com que a metade dos filhotes dos animais morresse antes do nascimento. O resultado demonstra que algumas sequências de transposons podem ser fundamentais para a nossa sobrevivência.
Talvez a melhor explicação sobre o motivo da existência dos transposons no nosso genoma possa ser o fato de que eles são extremamente antigos e datam das primeiras formas de vida, segundo Boeke.
Outros cientistas sugeriram que eles provêm de vírus que invadiram o nosso DNA ao longo da história humana, antes de receberem gradualmente novas funções no corpo para que tivessem algum propósito útil.
“Na maioria das vezes, os transposons são patógenos que nos infectam e podem infectar células da linha germinal, [que são] o tipo de células que transmitimos para a geração seguinte”, afirma Dirk Hockemeyer, professor assistente de biologia celular da Universidade da Califórnia em Berkeley, nos Estados Unidos.
“Eles podem então ser herdados e gerar integração estável ao genoma”, segundo ele.
Boeke descreve o genoma obscuro como um registro fóssil vivo de alterações fundamentais no nosso DNA que ocorreram há muito tempo, na história antiga.
Uma das características mais fascinantes dos transposons é que eles podem se mover de uma parte do genoma para outra — um tipo de comportamento que gerou seu nome — criando ou revertendo mutações nos genes, às vezes com consequências extraordinárias.
O movimento de um transposon para um gene diferente pode ter sido responsável, por exemplo, pela perda da cauda na grande família dos primatas, fazendo com que a nossa espécie desenvolvesse a capacidade de andar ereta.
“Aqui você tem esse evento único que teve enorme efeito sobre a evolução, gerando toda uma linhagem de grandes primatas, incluindo a nós”, segundo Boeke.
Mas, da mesma forma que nossa crescente compreensão sobre o genoma obscuro explica cada vez mais sobre a evolução, ela pode também esclarecer o motivo do surgimento das doenças.
Ounzain ressalta que, se olharmos para os estudos de associação genômica ampla (GWAS, na sigla em inglês), que pesquisam as variações genéticas entre grandes quantidades de pessoas para identificar quais delas são relacionadas a doenças, a grande maioria das variações ligadas a doenças crônicas, como a doença de Alzheimer, diabetes e doenças cardíacas, não está nas regiões de codificação de proteínas, mas sim no genoma obscuro.
O genoma obscuro e as doenças
A ilha de Panay, nas Filipinas, é mais conhecida pelas suas cintilantes areias brancas e pelo fluxo regular de turistas. Mas este local idílico esconde um segredo trágico.
Panay abriga o maior número de casos existentes no mundo de um distúrbio dos movimentos incurável, chamado distonia-parkinsonismo ligado ao X (XDP, na sigla em inglês).
Como no mal de Parkinson, as pessoas com XDP desenvolvem uma série de sintomas que afetam sua capacidade de andar e reagir rapidamente a diversas situações.
Desde a descoberta do XDP nos anos 1970, a doença só foi diagnosticada em pessoas de ascendência filipina. Este fato permaneceu um mistério por muito tempo, até que os geneticistas descobriram que todos esses indivíduos possuem a mesma variante exclusiva de um gene chamado TAF1.
O início dos sintomas parece ser causado por um transposon no meio do gene, que é capaz de regular sua função de forma a causar prejuízo ao corpo ao longo do tempo. Acredita-se que esta variante genética tenha surgido pela primeira vez cerca de 2.000 anos atrás, antes de ser transmitida e se estabelecer na população.
“O gene TAF1 é um gene essencial, ou seja, ele é necessário para o crescimento e a multiplicação de todos os tipos de células”, afirma Boeke.
“Quando você ajusta sua expressão, você tem esse defeito muito específico, que se manifesta como uma horrível forma de parkinsonismo.”
Este é um exemplo simples de como algumas sequências de DNA do genoma obscuro podem controlar a função de diversos genes, seja ativando ou reprimindo a transformação de informações genéticas em proteínas, em resposta a indicações recebidas do ambiente.
O genoma escuro também fornece instruções para a formação de diversos tipos de moléculas, conhecidas como RNAs não codificantes. Eles podem desempenhar diversos papéis, desde ajudar a fabricar algumas proteínas, bloquear a produção de outras ou ajudar a regular a atividade genética.
“Os RNAs produzidos pelo genoma obscuro agem como os maestros da orquestra, conduzindo como o seu DNA reage ao ambiente”, explica Ounzain. E estes RNAs não codificantes, agora, são cada vez mais considerados a ligação entre o genoma obscuro e diversas doenças crônicas.
A ideia é que, se fornecermos sistematicamente os sinais errados para o genoma obscuro com o nosso estilo de vida — por exemplo, com o fumo, má alimentação e inatividade —, as moléculas de RNA produzidas por ele podem fazer com que o corpo entre em um estado de doença, alterando a atividade genética, de forma a aumentar as inflamações do corpo ou promover a morte celular.
Acredita-se que certos RNAs não codificantes podem desligar ou aumentar a atividade de um gene chamado p53, que age normalmente para evitar a formação de tumores.
Em doenças complexas, como a esquizofrenia e a depressão, todo um conjunto de RNAs não codificantes pode agir em sincronia para reduzir ou aumentar a expressão de certos genes.
Mas o nosso reconhecimento cada vez maior da importância do genoma obscuro já está trazendo novos métodos de tratamento dessas doenças.
A indústria de desenvolvimento de remédios costuma se concentrar nas proteínas, mas algumas empresas estão percebendo que pode ser mais eficaz tentar interromper os RNAs não codificantes, que controlam os genes encarregados desses processos.
No campo das vacinas contra o câncer, por exemplo, as empresas realizam sequenciamento de DNA em amostras de tumores dos pacientes para tentar identificar um alvo adequado a ser atacado pelo sistema imunológico. E a maioria dos métodos concentra-se apenas nas regiões codificantes de proteínas do genoma.
Mas a empresa alemã de biotecnologia CureVac é pioneira em um método de análise das regiões não codificantes de proteínas, na esperança de encontrar um alvo que possa interromper o câncer na fonte.
Já a empresa de Ounzain, a Haya Therapeutics, atualmente está realizando um programa de desenvolvimento de drogas dirigido a uma série de RNAs não codificantes que dirigem a formação de tecidos de cicatrização, ou fibrose, no coração — um processo que pode causar insuficiência cardíaca.
Uma das esperanças é que este método possa minimizar os efeitos colaterais decorrentes de muitos remédios de uso comum.
“O problema quando medicamos as proteínas é que existem apenas cerca de 20 mil delas no corpo e a maioria é expressa em muitas células e processos diferentes, que não têm relação com a doença”, afirma Ounzain.
“Mas a atividade do genoma obscuro é extraordinariamente específica. Existem RNAs não codificantes que regulam a fibrose apenas no coração, de forma que, ao medicá-los, temos um remédio potencialmente muito seguro”, explica ele.
O desconhecido
Paralelamente, parte desse entusiasmo precisa ser atenuada pelo fato de que, em termos de compreensão do funcionamento do genoma obscuro, apenas acabamos de arranhar a superfície.
Sabemos muito pouco sobre o que os geneticistas descrevem como regras básicas: como essas sequências não codificantes de proteínas comunicam-se para regular a atividade genética? E como exatamente essas teias complexas de interações se manifestam por longos períodos de tempo até se tornarem traços de doenças, como a neurodegeneração observada no mal de Alzheimer?
“Estamos ainda no começo”, afirma Dirk Hockemeyer. “Os próximos 15 a 20 anos ainda serão assim – [iremos] identificar comportamentos específicos em células que podem gerar doenças e, em seguida, tentar identificar as partes do genoma obscuro que podem estar envolvidas na modificação desses comportamentos. Mas, agora, temos ferramentas para nos aprofundar nisso, algo que antes não tínhamos.”
Uma dessas ferramentas é a edição genética.
Jef Boeke e sua equipe estão atualmente tentando aprender mais sobre a forma de desenvolvimento dos sintomas de XDP, reproduzindo a inserção de transposons genéticos TAF1 em camundongos.
No futuro, uma versão mais ambiciosa deste projeto poderá tentar compreender como as sequências de DNA não codificantes de proteínas regulam os genes, construindo blocos de DNA sintético a partir do zero, para transplante em células de camundongos.
“Estamos agora envolvidos em pelo menos dois projetos, usando um enorme pedaço de DNA que não faz nada e tentando instalar nele todos esses elementos”, afirma Boeke.
“Colocamos um gene ali, uma sequência não codificante em frente a ele e outra mais distante, para ver como esse gene se comporta”, explica ele. “Agora, temos todas as ferramentas para realmente construir pedaços do genoma obscuro de baixo para cima e tentar entendê-lo.”
Hockemeyer prevê que, quanto mais aprendermos, mais surpresas inesperadas o livro genético da vida continuará a nos apresentar, da mesma forma que ocorreu quando o primeiro genoma foi sequenciado, 20 anos atrás.
Para ele, “as questões são muitas. O nosso genoma ainda está evoluindo ao longo do tempo? Conseguiremos decodificá-lo totalmente?”
“Ainda estamos nesse espaço escuro em aberto que estamos explorando e existem muitas descobertas realmente fantásticas à nossa espera.”
Preocupação com eventos extremos une apoiadores de Lula (PT) e Bolsonaro (PL)
Lucas Lacerda
6 de abril de 2023
Nove entre dez brasileiros acham que vão sofrer impactos das mudanças climáticas na vida pessoal, e dois terços da população enxergam que a vida será muito prejudicada por eventos climáticos extremos nos próximos cinco anos.
Também há consenso sobre a distribuição desse impacto: 95% das pessoas acham que a parcela mais pobre sofrerá com esses efeitos.
Os dados fazem parte de pesquisa do Datafolha que ouviu 2.028 pessoas, de 126 municípios, com mais de 16 anos, nos dias 29 e 30 de março. A margem de erro é de dois pontos percentuais.
Enquanto a maioria acha que as mudanças climáticas vão prejudicar muito a parcela mais pobre da população (82%), uma minoria acha que a população rica vai sofrer da mesma forma (24%).
Quando avaliam a preocupação com os impactos na vida pessoal, 70% das mulheres afirmam que haverá muito prejuízo —índice que cai para 62% entre os homens.
Para Lori Regattieri, senior fellow da Mozilla Foundation, o destaque indica ainda que as mulheres podem estar mais atentas a riscos para a saúde própria e da família, além de reagirem mais rápido.
“Elas despontam em nível de preocupação principalmente quando temos questões que envolvem a saúde delas, da família e dos filhos”, diz a pesquisadora, que estuda comportamento digital e desinformação na agenda climática e socioambiental.
Regattieri destaca que a percepção também precisa considerar aspectos de cor e renda. “Quando falamos de mulheres negras, há maior probabilidade de morarem em áreas de risco. É onde se percebe o racismo ambiental.”
A percepção de muito prejuízo na vida pessoal foi apontada por 69% das pessoas pretas e pardas ouvidas na pesquisa, contra 61% entre pessoas brancas. A margem de erro é de três pontos percentuais para pessoas pardas, e quatro e seis para brancos e negros, respectivamente.
A pesquisa revela ainda uma preocupação com as mudanças climáticas muito similar entre quem declarou voto no presidente Luiz Inácio Lula da Silva (PT) e quem disse ter votado no ex-presidente Jair Bolsonaro (PL) no segundo turno das eleições de 2022. Os percentuais também são próximos quando comparam-se os de apoiadores de PT e PL (quando citadas apenas as siglas, sem mencionar os candidatos em questão).
O prejuízo na vida pessoal decorrente de mudanças no clima é apontado por 89% dos eleitores de Lula e 88% dos de Bolsonaro. A pesquisa, assim, pode indicar que o medo de impactos na própria vida supera o posicionamento político —em campanha, Lula disse que priorizaria a agenda climática, enquanto a gestão Bolsonaro promoveu um desmonte das políticas públicas ambientais.
Na visão de Marcio Astrini, secretário-executivo do Observatório do Clima, rede de organizações socioambientais, isso ocorre porque a relação entre o apoio político e mudanças climáticas ainda não é tão direta no Brasil quanto problemas de emprego, fome, pobreza e saúde.
“Para a composição do voto, a questão de clima e ambiente não é tão decisiva [no Brasil] como em países que já venceram esses problemas”, diz.
“O que verificamos é que há uma narrativa criada para esse público: que o Bolsonaro não é uma pessoa ruim para a agenda de meio ambiente, que as acusações são invenção de esquerdistas, que o movimento ambiental do mundo é bancado por comunistas contra o desenvolvimento do país.”
Os danos imediatos que possam ser causados por uma chuva extremamente forte são outra preocupação em destaque na pesquisa. Para mais da metade da população (61%), a precipitação extrema é um risco para a casa onde moram, e 86% apontam risco para a infraestrutura —ruas, pontes e avenidas— da cidade em que vivem.
A percepção ampla sobre mudanças climáticas não é novidade no Brasil, de acordo com pesquisas anteriores do Datafolha. Levantamento realizado em 2010 mostrou que 75% dos brasileiros achavam que as atividades humanas contribuíam muito para o aquecimento global —o que é um consenso científico, amplamente difundido. Em 2019, esse índice caiu para 72%.
O mais recente relatório do painel científico do clima da ONU (IPCC, na sigla em inglês), lançado em 20 de março —poucos dias antes da realização da pesquisa do Datafolha, portanto—, enfatiza que o mundo vive sob pressão climática sem precedentes e que alguns danos já são irreversíveis.
Os cientistas alertam que o prazo para agir e frear o aquecimento do planeta em 1,5°C, meta do Acordo de Paris, é curto e exige ações rápidas dos países.
O projeto Planeta em Transe é apoiado pela Open Society Foundations.
OUTRO LADO: Defesa Civil diz que enviou SMS para 34 mil celulares cadastrados na região do litoral norte
Isabela Palhares
22 de fevereiro de 2023
O Cemaden (Centro Nacional de Monitoramento e Alerta para Desastres Naturais) afirma ter alertado o Governo de São Paulo cerca de 48 horas antes sobre o alto risco de desastre no litoral paulista.
Segundo o Cemaden, que é um órgão federal, a Defesa Civil estadual foi alertada sobre a ocorrência de chuvas fortes na região e o alto risco de desastres em uma reunião online na manhã de sexta (17). A vila do Sahy, o ponto em que mais pessoas morreram, foi citada como uma área de alto risco para deslizamento.
Em nota, a Defesa Civil diz que emitiu alertas preventivos à população desde que foi informada da previsão de fortes chuvas.
“Nós alertamos e avisamos a Defesa Civil na sexta, foram quase 48 horas antes de o desastre acontecer. Seguimos o protocolo que é estabelecido, alertando a Defesa Civil estadual para que ela se organizasse com os municípios”, disse Osvaldo Moraes, presidente do Cemaden.
O Cemaden é ligado ao Ministério da Ciência, Tecnologia e Inovação. O centro é responsável por monitorar índices meteorológicos e geológicos e alertar, caso necessário, os órgãos de prevenção.
Moraes diz que, ainda na quinta-feira (16), um boletim meteorológico já indicava as fortes chuvas na região. Esse boletim foi repassado para a Defesa Civil do estado.
Depois desse primeiro alerta, o Cemaden se reuniu com um representante da Defesa Civil estadual na sexta de manhã. “Nós emitimos boletins diários, o de quinta já indicava o risco. Mas o de sexta-feira aumentou o nível de alerta para essa região.”
A Defesa Civil disse que enviou 14 alertas de mensagem de texto (SMS) para mais de 34 mil celulares cadastrados na região do litoral norte. O órgão informou ainda que começou a articular ações as defesas civis municipais na quinta-feira quando recebeu a previsão de fortes chuvas na região.
“Os primeiros avisos divulgados pela Defesa Civil do Estado, que ocorreram ainda de forma preventiva, foram publicados por volta das 15 horas de quinta-feira, nas redes sociais da Defesa Civil e do Governo com informações sobre o volume de chuvas estimado para o período, bem como as medidas de segurança que poderiam ser adotadas pela população em áreas de risco”, diz a nota.
O órgão disse ainda que à 00h52 de sexta, ao acompanhar imagens de radares e satélites, enviou a primeira mensagem de SMS com o alerta.
Nas redes sociais da Defesa Civil, a primeira mensagem de alertas para chuvas fortes no sábado foi feita às 12h22. A mensagem, no entanto, não fala sobre os riscos de desmoronamento.
Durante a noite, outros alertas foram postados pelo órgão e nenhum deles faz menção ao risco de desmoronamento de terra. Foi só às 19h49 uma mensagem recomendou que as pessoas deixassem o local se precisassem.
Para os especialistas, a proporção do desastre e o elevado número de vítimas mostram que apenas a estratégia de envio de SMS aos moradores não é eficiente. Além de não ser possível saber se as pessoas viram os alertas, não havia um plano ou orientação sobre o que fazer na situação.
“Você cria um sistema de aviso, as pessoas podem até receber a mensagem, mas não sabem o que fazer com aquela informação. Não há uma orientação para onde devem ir, quando sair de casa, o que levar”, diz Eduardo Mario Mendiondo, coordenador científico do Ceped (Centro de Estudos e Pesquisas sobre Desastres) da USP.
Para ele, a estratégias devem pensar também criação de rotas de fugas em áreas de risco e na orientação aos moradores. “A população precisa saber qual o risco está correndo e como se proteger. É injusto depois dizer que eles não queriam sair de casa, eles não tinham orientação correta do que fazer.”
Segundo ele, em diversas cidades do país, como Petrópolis e Salvador, o alerta ocorre por uma sirene.
“Você garante que todo mundo vai ouvir a qualquer momento do dia. É o instrumento mais antigo, mas que funciona. Uma sirene dá o recado claro do risco iminente”, diz.
Para Fernando Rocha Nogueira, coordenador do LabGRIS (Laboratório Gestão de Riscos) da UFABC, as autoridade brasileiras assistem de forma inerte aos desastres que ocorrem no país. Segundo ele, o Brasil conta com bons sistemas de monitoramento, mas não desenvolve estratégias para proteger a população.
“Temos um problema grave de comunicação no país. Tinha o mapeamento de que iria chover muito, que havia um alto risco e não se deu a atenção devida. Milhares de pessoas desceram para o litoral, ignorando a previsão. Nós não temos conscientização do risco, nós vivemos um negacionismo das informações climáticas”, diz.
Como foram os avisos
Quinta-feira (16) Boletim do Cemaden alerta para a ocorrência de chuvas fortes e volumosas no litoral paulista durante o Carnaval
Sexta-feira (17) Em reunião virtual, o Cemaden faz alerta sobre a previsão de chuvas fortes e o risco de deslizamentos de terra para integrantes da Defesa Civil do estado. A vila do Sahy estava entre as áreas apontadas como de maior risco
Sábado (18)
12h22: Defesa Civil do Estado avisa nas redes sociais que a chuva estava se espalhando pela região de Ubatuba e Caraguatatuba. “Tem vento e raios. Atinge municípios vizinhos. Tenha cuidado nas próximas horas”, diz a mensagem
18h33: Uma nova mensagem da Defesa Civil é postada alertando para chuva persistente na região.
19h49: Outra mensagem é postada pela Defesa Civil diz que a “chuva está se espalhando” pelo Litoral Norte e pede para que as pessoas “tenham cuidado nas próximas horas”
23h13: A Defesa Civil alerta que a chuva persiste na região e recomenda “não enfrente alagamentos. Fique atento a inclinação de muros e a rachaduras. Se precisar saia do local”
03h15: O órgão volta a alerta sobre a chuva forte e persistente no litoral norte e diz “não enfrente alagamentos. Fique atento a inclinação de muros e a rachaduras. Se precisar saia do local.”
Especialistas apontam falta de investimento e defasagem do modelo; temporal foi agravado por ciclone extratropical, diz meteorologista
Carlos Petrocilo
22 de fevereiro de 2023
A falta de investimento em novas tecnologias, aliada à aceleração das mudanças climáticas, torna a previsão do tempo mais imprecisa no Brasil, segundo especialistas ouvidos pela Folha.
O serviço de meteorologia é essencial para que órgãos públicos, como Defesa Civil, se preparem com antecedência na tentativa de mitigar os efeitos de um temporal.
Como consequência do temporal, 48 pessoas morreram, sendo 47 em São Sebastião e uma em Ubatuba, conforme os dados desta quarta (22).
Segundo o professor Eduardo Mario Mendiondo, coordenador científico do Ceped (Centro de Educação e Pesquisa de Desastres) da USP, os modelos atuais de previsão utilizam parâmetros atmosféricos calibrados por condições históricas e precisam ser atualizados.
“O clima está mudando, com maior magnitude e com maior frequência de ocorrência de extremos. Os modelos precisam ser atualizados de forma constante, em escala global e em regiões específicas, com microclima e dinâmicas peculiares, como é o caso da Serra do Mar e da Baixada Santista”, afirma Mendiondo.
O professor chama atenção para falta de investimentos públicos. Segundo ele, o governo precisa reforçar o quadro de servidores e investir em novas ferramentas para Cemaden (Centro Nacional de Monitoramento e Alertas de Desastres Naturais), Inpe (Instituto Nacional de Pesquisas Espaciais) e Inmet (Instituto Nacional de Meteorologia).
“Falta aumentar em 20 vezes o potencial de supercomputadores atuais em território nacional, falta contratar até 20 vezes o número servidores de manutenção e operação de supercomputadores e falta contratar até em dez vezes o número atual de técnicos operadores”, afirma o professor da USP.
Para suprir tais necessidades, Mendiondo estima que é necessário investimentos de R$ 25 bilhões por ano. “Isto para converter essas novas evidências científicas, melhorando as previsões, seguindo exemplos como Japão, Europa e Estados Unidos.”
O meteorologista Mamedes Luiz Melo afirma que o volume de chuva foi agravado pela ação do ciclone extratropical associado a uma frente fria que passou pelo Sul do país e por São Paulo. “A tecnologia vinha alertando, mas estamos lidando com algo móvel na atmosfera”, afirma Melo.
A Defesa Civil diz, em nota, que os boletins especiais e de aviso de risco meteorológicos são emitidos com base em simulações numéricas de previsão do tempo. “Tais limiares baseiam-se no histórico da chuva da região em que a chuva acumulada representa risco para transtornos, como deslizamentos, desabamentos, alagamentos, enchentes e ocorrências relacionadas a raios e ventos”, disse a Defesa Civil.
As projeções do Inmet, que emite alertas sobre riscos de deslizamentos para órgãos públicos, previram volumes de chuva menores do que um modelo usado pela empresa de meteorologia MetSul.
O modelo da empresa, chamado WRF, apontou que algumas áreas poderiam ter chuva acima de 600 mm em alguns pontos do terreno, o que acabou se confirmando. As previsões mais graves do instituto federal falavam em chuvas no patamar de 400 mm.
A previsão do Inmet para a chuva no litoral norte utilizou seis modelos numéricos diferentes. O instituto também usa o WRF, mas com uma resolução menor do que a da MetSul. Ou seja, a empresa conseguiu fazer os cálculos a partir de detalhes mais precisos do relevo do que o órgão público.
“O WRF tem se mostrado uma ferramenta muito importante na identificação de eventos extremos de chuva”, diz a meteorologista Estael Sias, da MetSul. “É importante assinalar que o modelo WRF é meramente uma ferramenta de trabalho, um produto, e não a previsão, e que o prognóstico final divulgado ao público e clientes leva em conta outros modelos e também a experiência do meteorologista para eventos extremos.”
Segundo o meteorologista Franco Nadal Villela, da equipe do Inmet em São Paulo, a resolução não é o fator mais decisivo na previsão de chuvas. Ele diz que os modelos usados pelo instituto deram conta de prever que o temporal em São Sebastião seria muito grave, embora não tenham chegado ao valor de 600 mm.
“Há modelos de menor resolução que pontualmente previram menos precipitação”, diz Villela. “As previsões modeladas estavam prevendo bem este evento e as variações na quantificação de precipitação [volume de chuva por hora] são mais uma das varáveis que ponderamos para emitir alertas.”
A Folha enviou perguntas através de email ao Inpe, que coordena o Centro de Previsão de Tempo e Estudos Climáticos (Cptec), mas não obteve resposta até a publicação deste texto.
Para José Marengo, climatologista e coordenador do Cemaden, defende mudanças [sic]. Ele explica que o modelo de previsão do tempo divide a região em áreas de até 200 quilômetros quadrados. Com isso, não é possível prever a quantidade de chuva aproximada em toda a região.
“O Brasil não está preparado tecnologicamente. É como se dividisse o Brasil em caixas grandes de 200 quilômetros quadrados, por isso há distorções dentro da mesma região. Pode ter áreas em que chove menos e outras que superaram os 600 milímetros, a modelagem não é perfeita”, afirma Marengo.
Ele também alerta para a falta de novas tecnologias. “O supercomputador do Inpe, o Tupã, que resolve as equações matemáticas em alta velocidade, é de 2010 e considerado obsoleto”, afirma o climatologista.
O professor Pedro Côrtes, do Instituto de Energia e Ambiente da USP, concorda que é área precise de mais recursos, mas pondera que as previsões dos órgãos do governo foram suficientes para apontar que uma tempestade grave se aproximava.
“A espera pelo investimento não pode postergar a solução do problema, as previsões já funcionam.”
A Folha publicou, no dia 28 de dezembro de 2010, a inauguração do supercomputador. Na ocasião, o Tupã custou R$ 31 milhões e era utilizado em países como Estados Unidos, China, Alemanha e Rússia. Para operá-lo, o Inpe precisou construir uma nova central elétrica, de mil quilowatts —antes tinha só 280 quilowatts disponíveis no instituto.
Até hoje os especialistas apontam o Tupã como o melhor equipamento que o Brasil possui para prever, além de enchentes, ondas de calor e frio e os períodos de seca.
Microplastics found washed up on a beach. About 11 percent of microplastics in the atmosphere over the western U.S. come from the ocean. Visual: Alistair Berg/DigitalVision via Getty Images
Airborne microplastics can absorb or reflect sunlight and seed clouds. How might that change the planet’s trajectory?
Plastic has become an obvious pollutant over recent decades, choking turtles and seabirds, clogging up our landfills and waterways. But in just the past few years, a less obvious problem has emerged. Researchers are starting to get concerned about how tiny bits of plastic in the air, lofted into the skies from seafoam bubbles or spinning tires on the highway, might potentially change our future climate.
“Here’s something that people just didn’t think about — another aspect of plastic pollution,” says environmental analytical chemist Denise Mitrano of ETH Zürich University, in Switzerland, who co-wrote an article last November highlighting what researchers know — and don’t yet know — about how plastics can change clouds, potentially altering temperature and rainfall patterns.
This story was originally published by the Yale Environment 360 and is reproduced here as part of the Climate Desk collaboration.
Clouds form when water or ice condenses on “seeds” in the air: usually tiny particles of dust, salt, sand, soot, or other material thrown up by burning fossil fuels, forest fires, cooking, or volcanoes. There are plenty of these fine particles, or aerosols, in the skies — a lot more since the Industrial Revolution — and they affect everything from the quality of the air we breathe, to the color of sunsets, to the number and type of clouds in our skies.
Until recently, when chemists thought of the gunk in our air, plastics did not leap to mind. Concentrations were low, they thought, and plastic is often designed to be water repellent for applications like bags or clothing, which presumably made them unlikely to seed cloud droplets. But in recent years, studies have confirmed not only that microscopic pieces of plastic can seed clouds — sometimes powerfully — but they also travel thousands of miles from their source. And there are a lot more particles in the air than scientists originally thought. All this has opened researchers’ eyes to their potential contribution to atmospheric murk — and, possibly, to future climate change.
“The people who invented plastics all those decades ago, who were very proud of inventions that transformed society in many ways — I doubt they envisaged that plastics were going to end up floating around in the atmosphere and potentially influencing the global climate system,” says Laura Revell, an atmospheric scientist at the University of Canterbury in New Zealand. “We are still learning what the impacts are for humans, ecosystems, and climate. But certainly, from what we know so far, it doesn’t look good.”
Global annual production of plastics has skyrocketed from 2 million tons in 1950 to more than 450 million tons today. And despite growing concerns about this waste accumulating in the environment, production is ramping up rather than slowing down — some oil companies are building up their plastic production capacity as the demand for fossil fuel declines. To date, more than 9 billion tons of plastic has been produced, and about half of it has gone to landfills or been otherwise discarded. Some project that by 2025, 11 billion tons of plastic will have accumulated in the environment.
Plastic has been found in soils, water, crops, and on the ocean floor. And in recent years, several studies have suggested that microplastics (pieces less than 5 millimeters in length) and nanoplastics (smaller than approximately 1,000 nanometers) were being transported long distances through the air. In 2019, for example, researchers found microplastics in the Pyrenees that had arrived via rain or snowfall. In 2020, Janice Brahney of Utah State University and four co-authors published a high-profile Science paper revealing high amounts of plastic in federally protected areas of the United States. Brahney had found the plastic by accident; she had been looking for phosphorus, but was surprised by all the colorful bits of gunk in her ground-based filters. Her study led to a slew of headlines warning, “It’s raining plastic.”
Brahney’s extensive U.S. dataset also opened the door for modelers to figure out where, exactly, all this plastic was coming from. “It’s a really beautiful data set,” says Cornell University’s Natalie Mahowald, who did the modeling work.
Mahowald took the plastic concentrations Brahney had cataloged and mapped them against atmospheric patterns and known sources of plastics, including roads, agricultural dust, and oceans. On roadways, tires and brakes hurl microplastics into the air. Plastic winds up in agricultural dust, notes Mahowald, in part from plastics used on farm fields and in part because people toss fleece clothing into washing machines: The wastewater flows to treatment plants that separate solids from liquids, and about half the resulting biosolids get sent to farms for use as fertilizer. As for the ocean, Mahowald says, big globs of plastic in places like the Pacific Gyre degrade into microscopic pieces, which then float to the surface and are whipped up into the air by chopping waters and bursting air bubbles.
Mahowald’s model concluded that over the western U.S., 84 percent of microplastics were coming from roads, 5 percent from agricultural dust, and 11 percent from the oceans. Plastic is so lightweight that even chunks tens of micrometers across — the width of a human hair — can be lofted and blown great distances. The model revealed that some of this plastic was found thousands of miles from its presumed source. The smaller the pieces, the longer they can stay aloft.
While individual bits of plastic may stay in the air for only hours, days, or weeks, there’s so much being kicked up so consistently that there’s always some in the air: enough that plastic bits are now also found in human lungs. “We’re definitely breathing them right now,” says Mahowald.
Working out exactly how much plastic is in our skies is extremely difficult. Most of these studies are done by painstakingly teasing bits of plastic out of filters and examining them under a microscope to get an estimate of shape and color, then using spectroscopic techniques to confirm their source material. The smaller the pieces, the harder they are to identify. Studies can also be plagued by contamination: Walking into a lab wearing a fleece sweater, for example, can skew results with shedding plastic microfibers.
Nearly a dozen studies have shown airborne microplastic concentrations ranging from between 0.01 particles per cubic meter over the western Pacific Ocean to several thousand particles per cubic meter in London and Beijing. The cities showing higher levels are probably genuinely more polluted, says Revell, but it’s also true that those studies used a more-sensitive technique that could identify smaller bits of plastic (under 10 micrometers in size). The other studies would have missed such smaller pieces, which made up about half the plastic found in the London and Beijing studies.
Plastic bits are now found in human lungs. “We’re definitely breathing them right now,” says Mahowald.
Concentrations of airborne nanoplastics are understood even less. The numbers floating around today, says atmospheric chemist Zamin Kanji, Mitrano’s colleague at ETH Zürich, are likely to be “significantly underestimated.”
For now, the proportion of plastics to total airborne aerosols is tiny, so plastics aren’t contributing much to aerosol climate impacts, says Mahowald. Even in London and Beijing, plastic may account for only a millionth of the total aerosols. But plastic production, and the accumulation of plastic in the environment, keeps going up. Says Mahowald, “It’s only going to get worse.”
That’s especially true in less polluted regions — like over the oceans of the Southern Hemisphere, Kanji says. Since plastic can likely travel farther than other, denser aerosols, it could become a dominant airborne pollutant in more pristine areas. Brahney and Mahowald’s paper concludes that plastic currently makes up less than 1 percent of anthropogenic aerosols landing on the ground but they could, “alarmingly,” make up more than 50 percent of the aerosols landing on some parts of the ocean downwind from plastic sources.
Exactly how aerosols affect climate has been a critical sticking point in climate models, and many of the details are still unknown. Different aerosols can change the climate by either reflecting or absorbing sunlight, which can depend, in part, on their color. Black soot, for example, tends to have a warming effect, while salt reflects and cools. Aerosols can land on the ground and change the albedo, or reflectivity, of ice and snow.
Aerosols also affect cloud formation: Different bits and pieces can seed more and smaller droplets of water or ice, making for different types of clouds at different elevations that last for different amounts of time. High-altitude, thin, icy clouds tend to warm the Earth’s surface like a blanket, while low-altitude, bright and fluffy clouds tend to reflect sunlight and cool the Earth.
Though tiny, aerosols have an oversized influence on climate. The murk of anthropogenic aerosols in the sky has, overall, had a dramatic cooling effect since the Industrial Revolution (without them, global warming would be 30 to 50 percent greater than it is today). And they have more sway on extreme weather than greenhouse gases do: A world warmed by removing aerosols would have more floods and droughts, for example, than a world warmed the same amount by CO2.
Revell and her colleagues took a stab at trying to model how microplastics might affect temperature by either reflecting or absorbing sunlight, a calculation of what’s known as “radiative forcing.” For simplicity’s sake, they assumed that plastic is always clear, even though that’s not true (and darker material tends to absorb more sunlight), and that the global concentration is uniformly one particle per cubic meter, which is on the order of 1,000 times lower than concentrations measured in, say, London.
With those assumptions, Revell found that plastic’s direct impact on radiative forcing is “so small as to be insignificant.” But, importantly, if concentrations reach 100 particles per cubic meter (which they already have in many spots), plastics could have about the same magnitude of radiative forcing as some aerosols already included in Intergovernmental Panel on Climate Change assessments. In other words, plastics become noteworthy. But whether they would warm, or cool, the Earth is unknown.
Though tiny, aerosols have an oversized influence on climate.
Aerosols often have a greater impact on the climate through their influence on clouds. Pristine plastic beads, Kanji notes, repel water and so are unlikely to affect clouds. But plastic can “age” in a matter of hours, says Kanji, during its transit to the sky: It can be abraded, or it can accumulate salt from the ocean and other chemicals from the atmosphere, all of which can make the particles more water-loving. Plastic pieces can also contain nooks and crannies, which aid in the formation of ice.
In the lab, Kanji’s student Omar Girlanda has run preliminary tests showing that under such battered conditions, plastic pieces can be potent cloudmakers. “Some of them are as good as mineral dust particles,” says Kanji, “which is the most well-known, effective ice nucleus out there.”
Kanji says skies heavily polluted with plastic will probably make both more high-altitude ice clouds, which tend to warm the Earth’s surface, and more low-altitude water clouds, which tend to cool the Earth. Which effect will dominate is unknown. “It doesn’t make sense to model it at the moment, given the poor estimates we have of [atmospheric] plastic,” says Kanji. Plastic could also affect precipitation patterns: In general, Kanji says, clouds that are more polluted tend to last longer before bursting into rain than do less polluted clouds, and then they rain more heavily.
Revell and her colleagues are now whittling down the assumptions in their paper, working out more detailed calculations for more realistic estimates of plastic concentrations, colors, and sizes. “All we know is that the problem is not going to go away anytime soon,” she says. “These plastics are incredibly long lived. They’re breaking down, and they’re going to be forming new microplastics for centuries. We just don’t know how big the problem is that we’ve committed ourselves to.”
Nicola Jones is a freelance journalist based in Pemberton, British Columbia. Her work can be found in Nature, Scientific American, Globe and Mail, and New Scientist.
Some things can’t be said easily in polite company. They cause offence or stir up intense anxiety. Where one might expect a conversation, what actually occurs is what the sociologist Eviator Zerubavel calls a ‘socially constructed silence.’
In his book Don’t Even Think About It,George Marshall argues that after the fiasco of COP 15 at Copenhagen and ‘Climategate’—when certain sections of the press claimed (wrongly as it turned out) that leaked emails of researchers at the University of East Anglia showed that data had been manipulated—climate change became a taboo subject among most politicians, another socially constructed silence with disastrous implications for the future of climate action.
In 2013-14 we carried out interviews with leading UK climate scientists and communicators to explore how they managed the ethical and emotional challenges of their work. While the shadow of Climategate still hung over the scientific community, our analysis drew us to the conclusion that the silence Marshall spoke about went deeper than a reaction to these specific events.
Instead, a picture emerged of a community which still identified strongly with an idealised picture of scientific rationality, in which the job of scientists is to get on with their research quietly and dispassionately. As a consequence, this community is profoundly uncomfortable with the storm of political controversy that climate research is now attracting.
The scientists we spoke to were among a minority who had become engaged with policy makers, the media and the general public about their work. A number of them described how other colleagues would bury themselves in the excitement and rewards of research, denying that they had any responsibility beyond developing models or crunching the numbers. As one researcher put it, “so many scientists just want to do their research and as soon as it has some relevance, or policy implications, or a journalist is interested in their research, they are uncomfortable.”
We began to see how for many researchers, this idealised picture of scientific practice might also offer protection at an unconscious level from the emotional turbulence aroused by the politicisation of climate change.
In her classic study of the ‘stiff upper lip’ culture of nursing in the UK in the 1950s, the psychoanalyst and social researcher Isobel Menzies Lyth developed the idea of ‘social defences against anxiety,’ and it seems very relevant here. A social defence is an organised but unconscious way of managing the anxieties that are inherent in certain occupational roles. For example, the practice of what was then called the ‘task list’ system fragmented nursing into a number of routines, each one executed by a different person—hence the ‘bed pan nurse’, the ‘catheter nurse’ and so on.
Ostensibly, this was done to generate maximum efficiency, but it also protected nurses from the emotions that were aroused by any real human involvement with patients, including anxiety, something that was deemed unprofessional by the nursing culture of the time. Like climate scientists, nurses were meant to be objective and dispassionate. But this idealised notion of the professional nurse led to the impoverishment of patient care, and meant that the most emotionally mature nurses were the least likely to complete their training.
While it’s clear that social defences such as hyper-rationality and specialisation enable climate scientists to get on with their work relatively undisturbed by public anxieties, this approach also generates important problems. There’s a danger that these defences eventually break down and anxiety re-emerges, leaving individuals not only defenceless but with the additional burden of shame and personal inadequacy for not maintaining that stiff upper lip. Stress and burnout may then follow.
Although no systematic research has been undertaken in this area, there is anecdotal evidence of such burnout in a number of magazine articles like those by Madeleine Thomas and Faith Kearns, in which climate scientists speak out about the distress that they or others have experienced, their depression at their findings, and their dismay at the lack of public and policy response.
Even if social defences are successful and anxiety is mitigated, this very success can have unintended consequences. By treating scientific findings as abstracted knowledge without any personal meaning, climate researchers have been slow to take responsibility for their own carbon footprints, thus running the risk of being exposed for hypocrisy by the denialist lobby. One research leader candidly reflected on this failure: “Oh yeah and the other thing [that’s] very, very important I think is that we ought to change the way we do research so we’re sustainable in the research environment, which we’re not now because we fly everywhere for conferences and things.”
The same defences also contribute to the resistance of most climate scientists to participation in public engagement or intervention in the policy arena, leaving these tasks to a minority who are attacked by the media and even by their own colleagues. One of our interviewees who has played a major role in such engagement recalled being criticised by colleagues for “prostituting science” by exaggerating results in order to make them “look sexy.”“You know we’re all on the same side,” she continued, “why are we shooting arrows at each other, it is ridiculous.”
The social defences of logic, reason and careful debate were of little use to the scientific community in these cases, and their failure probably contributed to internal conflicts and disagreements when anxiety could no longer be contained—so they found expression in bitter arguments instead. This in turn makes those that do engage with the public sphere excessively cautious, which encourages collusion with policy makers who are reluctant to embrace the radical changes that are needed.
As one scientist put it when discussing the goal agreed at the Paris climate conference of limiting global warming to no more than 2°C: “There is a mentality in [the] group that speaks to policy makers that there are some taboo topics that you cannot talk about. For instance the two degree target on climate change…Well the emissions are going up like this (the scientist points upwards at a 45 degree angle), so two degrees at the moment seems completely unrealistic. But you’re not allowed to say this.”
Worse still, the minority of scientists who are tempted to break the silence on climate change run the risk of being seen as whistleblowers by their colleagues. Another research leader suggested that—in private—some of the most senior figures in the field believe that the world is heading for a rise in temperature closer to six degrees than two.
“So repeatedly I’ve heard from researchers, academics, senior policy makers, government chief scientists, [that] they can’t say these things publicly,” he told us, “I’m sort of deafened, deafened by the silence of most people who work in the area that we work in, in that they will not criticise when there are often evidently very political assumptions that underpin some of the analysis that comes out.”
It seems that the idea of a ‘socially constructed silence’ may well apply to crucial aspects of the interface between climate scientists and policy makers. If this is the case then the implications are very serious. Despite the hope that COP 21 has generated, many people are still sceptical about whether the rhetoric of Paris will be translated into effective action.
If climate change work is stuck at the level of ‘symbolic policy making’—a set of practices designed to make it look as though political elites are doing something while actually doing nothing—then it becomes all the more important for the scientific community to find ways of abandoning the social defences we’ve described and speak out as a whole, rather than leaving the task to a beleaguered and much-criticised minority.
Na peça ‘Can I Live?’, Fehinti Balogun, com rap, animação e poesia, apresenta a colonização e a exploração de países africanos como temas centrais na discussão
Cristiane Fontes
2 de novembro de 2022
Foi em 2017, durante a preparação para a peça “Myth”, uma parábola climática da Royal Shakespeare Company, que o artista Fehinti Balogun acabou se dando conta da gravidade da crise do clima.
“Após ter feito muitas coisas, consegui meu primeiro papel principal numa peça no West End em Londres. Era o ano mais quente da história”, lembra o ator e dramaturgo britânico. “E, pela primeira vez, percebi que as plantações estavam morrendo, os campos estavam secos. Comecei a desenvolver uma espécie de ansiedade que nunca tive antes”, completa.
Com isso, veio o choque: “Eu tinha o trabalho que eu sempre sonhei, algo que eu tinha estudado para fazer, e, de repente, isso não significava nada”.
Balogun se juntou ao grupo ativista Extinction Rebellion, participou de diversos protestos e organizou uma palestra sobre o tema. Essa jornada o levou à produção de uma peça teatral que, durante a pandemia, foi transformada em um filme.
O ator britânico Fehinti Balogun, que criou a peça ‘Can I live?’, sobre mudanças climáticas. Fonte: New York Times/Tom Jamieson, 29.out.2021
Intitulada “Can I Live?” (posso viver?), a produção explica as mudanças climáticas a partir da perspectiva de uma pessoa negra, usando diversas performances musicais.
A mãe de Balogun, imigrante nigeriana, é quem guia a história. Fora da tela, também foi ela quem inspirou a criação do texto, a partir de questionamentos ao filho —que ele gravou secretamente para escutar de novo e pensar a respeito.
“Por que você está sacrificando sua carreira para fazer parte desses grupos?”, ela perguntava.
Mesmo discordando, o filho reconheceu na indignação da mãe um ponto muito importante: a discussão climática ficou elitizada e branca e ainda não foi capaz de incluir os segmentos mais pobres da população.
“Can I Live?”, pelo contrário, se propõe a não só trazer os dilemas pessoais do autor, que se misturam aos problemas mundiais e aos dados científicos, como é didática e criativa ao explicar, por exemplo, o efeito estufa em forma de rap. Criado com a companhia de teatro britânica Complicité, o filme mescla linguagens como animação, poesia e música.
“O objetivo é criticar descaradamente o sistema, sem culpar uma pessoa específica. Não se trata de envergonhar as pessoas, mas, sim, de educá-las e conectar-se com elas”, define Balogun.
Depois de uma turnê online, o filme foi exibido em eventos como a COP26 (conferência da ONU sobre mudanças climáticas realizada em 2021 na Escócia) e a London Climate Action Week.
A ideia, diz Balogun, é fazer “Can I Live?”, que ainda não foi lançado no Brasil, chegar a movimentos de base, para estimular conversas sobre a crise climática entre aqueles que não costumam se conectar com o assunto.
Quando perguntado sobre a agenda climática no Reino Unido, o autor é categórico: “Temos um governo que não está levando isso tão a sério quanto deveria e que nunca levou o racismo tão a sério quanto deveria. Temos toda uma economia baseada num histórico de escravidão que não é debatida. Então, dentro das escolas, apagamos essa história. O que aprendemos neste país não está nem perto do que deveria ser”.
Quando e por que você se envolveu com a agenda da crise climática?
Após ter feito muitas coisas, consegui meu primeiro papel principal numa peça no West End em Londres. Era o ano mais quente da história, depois de outro ano ter sido o ano mais quente da história, depois de o último antes disso ter sido o mais quente… E, pela primeira vez, eu percebi que as plantações estavam morrendo, os campos estavam secos. Comecei a desenvolver uma espécie de ansiedade que nunca tive antes. Eu tinha o trabalho que eu sempre sonhei, algo que eu tinha estudado para fazer, e, de repente, isso não significava nada.
Então comecei a tentar me envolver em diferentes projetos e me juntei ao [grupo ativista] Extinction Rebellion. E comecei a discutir tudo com minha mãe, que perguntava: “Por que você está sacrificando sua carreira para fazer parte desses grupos?”. E eu pensava: “Não, essa é a única coisa importante que estou fazendo”. E nós continuamos discutindo muito isso tudo.
Eu gravei secretamente tudo o que ela me disse, peguei os pontos importantes dela e transformei numa apresentação sobre o clima, porque percebi que meu papel era poder usar meu privilégio de ser um ator e ter essa formação.
Eu não sou de uma família particularmente rica. Cresci sem muito dinheiro, morando em habitação social, e o que eu tenho agora é devido ao meu trabalho como ator, aos meus contatos e a todas essas perspectivas diferentes. Então eu montei essa palestra, que é como um TED Talk, usando as mensagens de voz da minha mãe.
Esse trabalho decolou, uma coisa levou à outra e começamos a trabalhar em uma peça, que depois virou um filme, “Can I Live?”. Foi assim que essa jornada climática de repente tomou conta da minha vida.
Sua mãe é a verdadeira estrela do filme. Quais foram as coisas importantes que ela levantou sobre o assunto?
Muitas. Uma delas é exatamente o que significa resistir quando você é uma minoria, e o que significa para a sua criação. Isso afeta não apenas o seu futuro, mas também a ideia que foi passada a pessoas como minha mãe, minhas tias, meus tios sobre o que é o “bom imigrante”.
Não é algo que ela tenha me dito explicitamente, mas que eu intuí de tudo o que ela estava me dizendo. Você não é capaz de reagir porque tem sorte de ter o que tem, entende? Ela dizia: “Há pessoas que estão esperando para entrar no país. Há pessoas que estão esperando conseguir a cidadania. E você acha que eles vão criticar aquele país que diz que eles não deveriam estar lá?”.
Para o público no Brasil que ainda não teve a chance de assistir ao filme, como você o descreveria?
Basicamente, o filme é uma explicação das mudanças climáticas a partir da perspectiva de uma pessoa negra. O objetivo é criticar descaradamente o sistema, sem culpar uma pessoa específica. Não se trata de envergonhar as pessoas, mas, sim, de educá-las e conectar-se com elas.
Eu quero que as pessoas assistam e vejam a si mesmas no filme todo ou em algumas partes, ou que vejam sua mãe ou sua avó ou seus amigos nas conversas. O filme tinha como objetivo levar as pessoas por essa jornada histórica até onde estamos agora e descobrirem o que podem fazer.
Colocamos o filme para distribuição online durante a pandemia. As pessoas pagavam o que podiam. A ideia era tentar torná-lo o mais acessível possível. Não foi algo como: “Ei, nós fizemos uma obra de arte!”, mas ela é exibida num teatro muito metido onde as pessoas se sentem desconfortáveis e têm dificuldades para acessar.
A ideia foi descentralizar esta obra e distribuí-la para o maior número de pessoas possível, e oferecê-la a movimentos de base, para que pudessem exibi-lo e conversar a partir disso e incluir nessas conversas pessoas que não costumavam se conectar.
A propósito, como envolver nas questões climáticas pessoas que estão lutando para sobreviver?
Acho que a coisa mais importante que aprendi sobre me comunicar com as pessoas é que você precisa ir ao encontro delas. Você não pode chegar em alguém esperando que essa pessoa tenha o seu mesmo nível de entusiasmo ou raiva, ou desgosto, ou desdém, porque todo mundo tem algo acontecendo em suas vidas.
O que temos no sistema é que constantemente nos dizem que temos que consertar algo individualmente, e que é nossa culpa individual. O fato de você estar passando por tanta insegurança alimentar é porque você não trabalhou duro o suficiente, ou porque 20 anos atrás você não economizou isso, ou fez aquilo. E se você tivesse feito todas essas coisas, você estaria bem e a culpa é sua e blá, blá, blá.
Você tem de olhar para essa questão de um ponto de vista estrutural. Estrutural e espiritual. Eu posso despejar todas as minhas ideias sobre estrutura e coisas de ativismo em cima de você, mas, no final das contas, se seu prato está cheio, seu prato está cheio; você já chegou no seu limite. A questão é muito mais profunda, e é muito solitário e difícil saber que você tem muitos problemas que precisa consertar. No final, o que está mesmo no centro disso é ter uma comunidade.
E como você descreveria o debate sobre mudanças climáticas no Reino Unido no momento?
Essa é uma pergunta difícil! Agora no Reino Unido temos um governo que não está levando isso tão a sério quanto deveria e que nunca levou o racismo tão a sério quanto deveria.
Temos toda uma economia baseada num histórico de escravidão que não é debatida. Então, dentro das escolas, apagamos essa história. O que aprendemos neste país não está nem perto do que deveria ser, na verdade. Mas, se estivermos falando de pensamentos e sentimentos em relação às mudanças climáticas, as pessoas sabem disso, embora não saibam o que fazer.
Na COP26, no ano passado, você participou de eventos com artistas e ativistas indígenas brasileiros. Como o discurso deles ecoou com você e no Reino Unido?
A COP é um evento decepcionante, via de regra. Não me inspirou nem um pouco. O que foi inspirador foram todos os ativistas que estavam lá e pessoas diferentes de muitos países diferentes, fazendo coisas incríveis e falando sobre tantas coisas. É uma comunidade muito forte.
Mas é muito difícil no Reino Unido. O patriotismo está apenas conectado a um ponto de vista ideológico e imperialista do mundo, que diz: “Eu sou superior a você”. Então por que aprender com aquele ativista brasileiro diferente? Já os indígenas eram o oposto disso. A mensagem deles era: “Estes somos nós! E vamos compartilhar isso com vocês! Vamos proteger isso para as gerações futuras!”.
Na sua visão, como fortalecer o movimento global de justiça climática, considerando o atual contexto político?
Parte do movimento dos direitos civis estava ligado à educação, à educação em massa e para certas comunidades. A ideia não é trabalhar com o medo, mas sim trabalhar através do medo para chegar a soluções.
Então, para fortalecer o movimento, [precisamos de] educação em massa, especificamente em certas zonas; e precisamos que diferentes movimentos de base se unam.
Em termos de mudança na narrativa, quais são as estratégias que você considera mais importantes?
Precisamos mudar a narrativa sobre riqueza e propriedade. Nós realmente precisamos entender que a crise climática é uma crise de classes, e dentro dessa crise de classes, há uma interseccionalidade muito racista.
Simplesmente entender essas coisas eu acho que vai ajudar muito; e é muito difícil, porque dentro do ideal capitalista, [a economia] só funciona se você sentir falta de alguma coisa. Eles só podem vender maquiagem para você se você acreditar que precisa de maquiagem. Eu não estou dizendo que as pessoas não devem usar maquiagem, mas, sim, que você só vai comprar algo se achar que precisa daquilo.
São essas mudanças de narrativas sobre o que achamos que é necessário e o que é, na verdade, necessário.
E precisamos de bondade radical. Radical no sentido de que não somos uma cultura muito indulgente.
O debate político anda muito polarizado, inclusive no Brasil, como você deve saber. Você poderia descrever melhor a ideia de bondade radical?
O que quero dizer com bondade radical não é apenas ser radicalmente gentil com a pessoa com opiniões opostas, mas também ser radicalmente gentil consigo mesmo.
Por que estou tentando fazer com que alguém que, fundamentalmente, me odeia goste de mim? Como isso me ajuda ou ajuda a outra pessoa? No final das contas, independentemente de eles terem dito que gostavam ou não de mim, eles vão embora e eu fico com esse sentimento. A única maneira de lidar com isso é ter uma comunidade atrás de você que esteja disposta a compartilhar isso com você.
Você sabe o que isso significa? Significa se afastar da postura individual de “eu vou consertar o mundo” para algo como “estas são as pessoas que eu preciso para poder fazer isso”.
Eu sempre falo, você tem que fazer uma escolha quando você fala com alguém, especialmente com alguém com uma opinião oposta a você que não tem interesse direto no assunto, como por exemplo, racismo, sexismo, ou mesmo mudanças climáticas.
Quando a pessoa não é afetada emocional, física e praticamente pela coisa e argumenta contra você, você tem que se perguntar: “Eu tenho condições de me envolver nisso hoje? Até onde quero ir? Vou ter alguém cuidando de mim quando a conversa terminar?”. Então a bondade radical não é apenas ter um espaço para a outra pessoa: é para você mesmo.
Raio-X
Fehinti Balogun
Ator, dramaturgo, escritor e pintor britânico de origem nigeriana, nascido em Greenwich, em Londres. Além de “Can I Live?”, participou de peças como “Myth” (mito), “The Importance of Being Earnest” (a importância de ser prudente) e “Whose Planet Are You On?” (você está no planeta de quem?). No cinema, fez trabalhos como “Juliet, Nua e Crua”, “Duna” e “Walden”. Na TV, participou das séries “I May Destroy You” (posso te destruir), “Informer” (informante) e “O Filho Bastardo do Diabo”, cuja primeira temporada estreia no fim de outubro na Netflix no Brasil.
Mudanças sociais e globais levam terceiro mandato a ver na política do clima uma oportunidade para novas alianças e reformas programáticas
Mathias Alencastro
1 de novembro de 2022
A ascensão da COP do Egito a primeiro palco da nova diplomacia do governo eleito se deve a duas dinâmicas interdependentes. A eleição de Lula encerra um ano terrível, porém transformador, para a política climática.
Por um lado, a Guerra da Ucrânia deu ímpeto às indústrias fósseis, que atravessavam um raro período de declínio, enquanto as divisões crescentes entre o Ocidente e o Oriente, mas também entre o Norte e o Sul Global, agravaram a crise da governança climática.
Por outro, a transição energética se tornou uma questão de segurança nacional para os países desenvolvidos, com implicações extraordinárias para a diplomacia e os investimentos internacionais.
Em seguida, a sociedade civil brasileira se fortaleceu através da emergência de uma geração de cientistas, ativistas e políticos de excelência e da multiplicação de organizações que estabeleceram a relação entre democracia, clima e justiça social. Essas mudanças tornaram inevitável a metamorfose do terceiro mandato de Lula em primeiro governo climático do Brasil.
Na América Latina, a onda rosa tem sido quase sempre acompanhada por uma onda verde. A plataforma climática do chileno Gabriel Boric era uma exigência do movimento de contestação popular, enquanto a do colombiano Gustavo Petro veio junto com a renovação da esquerda depois do acordo de paz.
O caso brasileiro, todavia, é excepcional, porque a política climática transformou de fora para dentro o Partido dos Trabalhadores, que tem na luta sindical e nacionalista das energias fósseis uma das suas principais referências históricas. O PT segue o caminho de outros partidos de centro-esquerda que viram na política climática uma oportunidade para novas alianças e reformas programáticas.
Além dos símbolos e dos discursos, o governo Lula será avaliado pela sua capacidade de superar o enfrentamento com os movimentos populistas que acomete tantas outras democracias.
Na Europa e nos Estados Unidos, os oportunistas que encabeçaram os movimentos antivacinas se converteram em expoentes dos protestos contra a alta dos preços de energia. O próprio movimento de caminhoneiros golpistas a favor de Jair Bolsonaro também é uma manifestação da hiperdependência do Brasil do sistema rodoviário e da indústria de carbono.
A partir de agora, toda a política é política climática.
O projeto Planeta em Transe é apoiado pela Open Society Foundations.
Greenhouse gases are among the chief causes of global warming and climate change. Getty Images
An international team led by Oregon State University researchers says in a report published today that the Earth’s vital signs have reached “code red” and that “humanity is unequivocally facing a climate emergency.”
In the special report, “World Scientists’ Warning of a Climate Emergency 2022,” the authors note that 16 of 35 planetary vital signs they use to track climate change are at record extremes. The report’s authors share new data illustrating the increasing frequency of extreme heat events and heat-related deaths, rising global tree cover loss because of fires, and a greater prevalence of insects and diseases thriving in the warming climate. Food insecurity and malnutrition caused by droughts and other climate-related extreme events in developing countries are increasing the number of climate refugees.
William Ripple, a distinguished professor in the OSU College of Forestry, and postdoctoral researcher Christopher Wolf are the lead authors of the report, and 10 other U.S. and global scientists are co-authors.
“Look at all of these heat waves, fires, floods and massive storms,” Ripple said. “The specter of climate change is at the door and pounding hard.”
“As we can see by the annual surges in climate disasters, we are now in the midst of a major climate crisis, with far worse to come if we keep doing things the way we’ve been doing them,” Wolf said.
“As Earth’s temperatures are creeping up, the frequency or magnitude of some types of climate disasters may actually be leaping up,” said the University of Sydney’s Thomas Newsome, a co-author of the report. “We urge our fellow scientists around the world to speak out on climate change.”
“The Scientist’s Warning” is a documentary by the research team summarizing the report’s results and can be watched online:
A different ‘Big One’ is approaching. Climate change is hastening its arrival.
Aug. 12, 2022
California, where earthquakes, droughts and wildfires have shaped life for generations, also faces the growing threat of another kind of calamity, one whose fury would be felt across the entire state.
This one will come from the sky.
According to new research, it will very likely take shape one winter in the Pacific, near Hawaii. No one knows exactly when, but from the vast expanse of tropical air around the Equator, atmospheric currents will pluck out a long tendril of water vapor and funnel it toward the West Coast.
This vapor plume will be enormous, hundreds of miles wide and more than 1,200 miles long, and seething with ferocious winds. It will be carrying so much water that if you converted it all to liquid, its flow would be about 26 times what the Mississippi River discharges into the Gulf of Mexico at any given moment.
When this torpedo of moisture reaches California, it will crash into the mountains and be forced upward. This will cool its payload of vapor and kick off weeks and waves of rain and snow.
The coming superstorm — really, a rapid procession of what scientists call atmospheric rivers — will be the ultimate test of the dams, levees and bypasses California has built to impound nature’s might.
But in a state where scarcity of water has long been the central fact of existence, global warming is not only worsening droughts and wildfires. Because warmer air can hold more moisture, atmospheric rivers can carry bigger cargoes of precipitation. The infrastructure design standards, hazard maps and disaster response plans that protected California from flooding in the past might soon be out of date.
As humans burn fossil fuels and heat up the planet, we have already increased the chances each year that California will experience a monthlong, statewide megastorm of this severity to roughly 1 in 50, according to a new study published Friday. (The hypothetical storm visualized here is based on computer modeling from this study.)
In the coming decades, if global average temperatures climb by another 1.8 degrees Fahrenheit, or 1 degree Celsius — and current trends suggest they might — then the likelihood of such storms will go up further, to nearly 1 in 30.
At the same time, the risk of megastorms that are rarer but even stronger, with much fiercer downpours, will rise as well.
These are alarming possibilities. But geological evidence suggests the West has been struck by cataclysmic floods several times over the past millennium, and the new study provides the most advanced look yet at how this threat is evolving in the age of human-caused global warming.
The researchers specifically considered hypothetical storms that are extreme but realistic, and which would probably strain California’s flood preparations. According to their findings, powerful storms that once would not have been expected to occur in an average human lifetime are fast becoming ones with significant risks of happening during the span of a home mortgage.
“We got kind of lucky to avoid it in the 20th century,” said Daniel L. Swain, a climate scientist at the University of California, Los Angeles, who prepared the new study with Xingying Huang of the National Center for Atmospheric Research in Boulder, Colo. “I would be very surprised to avoid it occurring in the 21st.”
Unlike a giant earthquake, the other “Big One” threatening California, an atmospheric river superstorm will not sneak up on the state. Forecasters can now spot incoming atmospheric rivers five days to a week in advance, though they don’t always know exactly where they’ll hit or how intense they’ll be.
Using Dr. Huang and Dr. Swain’s findings, California hopes to be ready even earlier. Aided by supercomputers, state officials plan to map out how all that precipitation will work its way through rivers and over land. They will hunt for gaps in evacuation plans and emergency services.
The last time government agencies studied a hypothetical California megaflood, more than a decade ago, they estimated it could cause $725 billion in property damage and economic disruption. That was three times the projected fallout from a severe San Andreas Fault earthquake, and five times the economic damage from Hurricane Katrina, which left much of New Orleans underwater for weeks in 2005.
Dr. Swain and Dr. Huang have handed California a new script for what could be one of its most challenging months in history. Now begin the dress rehearsals.
“Mother Nature has no obligation to wait for us,” said Michael Anderson, California’s state climatologist.
In fact, nature has not been wasting any time testing California’s defenses. And when it comes to risks to the water system, carbon dioxide in the atmosphere is hardly the state’s only foe.
THE ULTIMATE CURVEBALL
On Feb. 12, 2017, almost 190,000 people living north of Sacramento received an urgent order: Get out. Now. Part of the tallest dam in America was verging on collapse.
That day, Ronald Stork was in another part of the state, where he was worrying about precisely this kind of disaster — at a different dam.
Standing with binoculars near California’s New Exchequer Dam, he dreaded what might happen if large amounts of water were ever sent through the dam’s spillways. Mr. Stork, a policy expert with the conservation group Friends of the River, had seen on a previous visit to Exchequer that the nearby earth was fractured and could be easily eroded. If enough water rushed through, it might cause major erosion and destabilize the spillways.
He only learned later that his fears were playing out in real time, 150 miles north. At the Oroville Dam, a 770-foot-tall facility built in the 1960s, water from atmospheric rivers was washing away the soil and rock beneath the dam’s emergency spillway, which is essentially a hillside next to the main chute that acts like an overflow drain in a bathtub. The top of the emergency spillway looked like it might buckle, which would send a wall of water cascading toward the cities below.
Mr. Stork had no idea this was happening until he got home to Sacramento and found his neighbor in a panic. The neighbor’s mother lived downriver from Oroville. She didn’t drive anymore. How was he going to get her out?
Mr. Stork had filed motions and written letters to officials, starting in 2001, about vulnerabilities at Oroville. People were now in danger because nobody had listened. “It was nearly soul crushing,” he said.
“With flood hazard, it’s never the fastball that hits you,” said Nicholas Pinter, an earth scientist at the University of California, Davis. “It’s the curveball that comes from a direction you don’t anticipate. And Oroville was one of those.”
Ronald Stork in his office at Friends of the River in Sacramento.
The spillway of the New Exchequer Dam.
Such perils had lurked at Oroville for so long because California’s Department of Water Resources had been “overconfident and complacent” about its infrastructure, tending to react to problems rather than pre-empt them, independent investigators later wrote in a report. It is not clear this culture is changing, even as the 21st-century climate threatens to test the state’s aging dams in new ways. One recent study estimated that climate change had boosted precipitation from the 2017 storms at Oroville by up to 15 percent.
A year and a half after the crisis, crews were busy rebuilding Oroville’s emergency spillway when the federal hydropower regulator wrote to the state with some unsettling news: The reconstructed emergency spillway will not be big enough to safely handle the “probable maximum flood,” or the largest amount of water that might ever fall there.
Sources: Global Historical Climatology Network, Huang and Swain (2022) Measurements taken from the Oroville weather station and the nearest modeled data point
This is the standard most major hydroelectric projects in the United States have to meet. The idea is that spillways should basically never fail because of excessive rain.
Today, scientists say they believe climate change might be increasing “probable maximum” precipitation levels at many dams. When the Oroville evacuation was ordered in 2017, nowhere near that much water had been flowing through the dam’s emergency spillway.
Yet California officials have downplayed these concerns about the capacity of Oroville’s emergency spillway, which were raised by the Federal Energy Regulatory Commission. Such extreme flows are a “remote” possibility, they argued in a letter last year. Therefore, further upgrades at Oroville aren’t urgently needed.
In a curt reply last month, the commission said this position was “not acceptable.” It gave the state until mid-September to submit a plan for addressing the issue.
The Department of Water Resources told The Times it would continue studying the matter. The Federal Energy Regulatory Commission declined to comment.
“People could die,” Mr. Stork said. “And it bothers the hell out of me.”
WETTER WET YEARS
Donald G. Sullivan was lying in bed one night, early in his career as a scientist, when he realized his data might hold a startling secret.
For his master’s research at the University of California, Berkeley, he had sampled the sediment beneath a remote lake in the Sacramento Valley and was hoping to study the history of vegetation in the area. But a lot of the pollen in his sediment cores didn’t seem to be from nearby. How had it gotten there?
When he X-rayed the cores, he found layers where the sediment was denser. Maybe, he surmised, these layers were filled with sand and silt that had washed in during floods.
It was only late that night that he tried to estimate the ages of the layers. They lined up neatly with other records of West Coast megafloods.
“That’s when it clicked,” said Dr. Sullivan, who is now at the University of Denver.
His findings, from 1982, showed that major floods hadn’t been exceptionally rare occurrences over the past eight centuries. They took place every 100 to 200 years. And in the decades since, advancements in modeling have helped scientists evaluate how quickly the risks are rising because of climate change.
For their new study, which was published in the journal Science Advances, Dr. Huang and Dr. Swain replayed portions of the 20th and 21st centuries using 40 simulations of the global climate. Extreme weather events, by definition, don’t occur very often. So by using computer models to create realistic alternate histories of the past, present and future climate, scientists can study a longer record of events than the real world offers.
Dr. Swain and Dr. Huang looked at all the monthlong California storms that took place during two time segments in the simulations, one in the recent past and the other in a future with high global warming, and chose one of the most intense events from each period. They then used a weather model to produce detailed play-by-plays of where and when the storms dump their water.
Those details matter. There are “so many different factors” that make an atmospheric river deadly or benign, Dr. Huang said.
Xingying Huang of the National Center for Atmospheric Research in Boulder, Colo. Rachel Woolf for The New York Times
The New Don Pedro Dam spillway.
Wes Monier, a hydrologist, with a 1997 photo of water rushing through the New Don Pedro Reservoir spillway.
In the high Sierras, for example, atmospheric rivers today largely bring snow. But higher temperatures are shifting the balance toward rain. Some of this rain can fall on snowpack that accumulated earlier, melting it and sending even more water toward towns and cities below.
Climate change might be affecting atmospheric rivers in other ways, too, said F. Martin Ralph of the Scripps Institution of Oceanography at the University of California, San Diego. How strong their winds are, for instance. Or how long they last: Some storms stall, barraging an area for days on end, while others blow through quickly.
Scientists are also working to improve atmospheric river forecasts, which is no easy task as the West experiences increasingly sharp shifts from very dry conditions to very wet and back again. In October, strong storms broke records in Sacramento and other places. Yet this January through March was the driest in the Sierra Nevada in more than a century.
“My scientific gut says there’s change happening,” Dr. Ralph said. “And we just haven’t quite pinned down how to detect it adequately.”
Better forecasting is already helping California run some of its reservoirs more efficiently, a crucial step toward coping with wetter wet years and drier dry ones.
On the last day of 2016, Wes Monier was looking at forecasts on his iPad and getting a sinking feeling.
Mr. Monier is chief hydrologist for the Turlock Irrigation District, which operates the New Don Pedro Reservoir near Modesto. The Tuolumne River, where the Don Pedro sits, was coming out of its driest four years in a millennium. Now, some terrifying rainfall projections were rolling in.
First, 23.2 inches over the next 16 days. A day later: 28.8 inches. Then 37.1 inches, roughly what the area normally received in a full year.
If Mr. Monier started releasing Don Pedro’s water too quickly, homes and farms downstream would flood. Release too much and he would be accused of squandering water that would be precious come summer.
But the forecasts helped him time his flood releases precisely enough that, after weeks of rain, the water in the dam ended up just shy of capacity. Barely a drop was wasted, although some orchards were flooded, and growers took a financial hit.
The next storm might be even bigger, though. And even the best data and forecasts might not allow Mr. Monier to stop it from causing destruction. “There’s a point there where I can’t do anything,” he said.
KATRINA 2.0
How do you protect a place as vast as California from a storm as colossal as that? Two ways, said David Peterson, a veteran engineer. Change where the water goes, or change where the people are. Ideally, both. But neither is easy.
Firebaugh is a quiet, mostly Hispanic city of 8,100 people, one of many small communities that power the Central Valley’s prodigious agricultural economy. Many residents work at nearby facilities that process almonds, pistachios, garlic and tomatoes.
Firebaugh also sits right on the San Joaquin River.
For a sleepless stretch of early 2017, Ben Gallegos, Firebaugh’s city manager, did little but watch the river rise and debate whether to evacuate half the town. Water from winter storms had already turned the town’s cherished rodeo grounds into a swamp. Now it was threatening homes, schools, churches and the wastewater treatment plant. If that flooded, people would be unable to flush their toilets. Raw sewage would flow down the San Joaquin.
Luckily, the river stopped rising. Still, the experience led Mr. Gallegos to apply for tens of millions in funding for new and improved levees around Firebaugh.
Levees change where the water goes, giving rivers more room to swell before they inundate the land. Levee failures in New Orleans were what turned Katrina into an epochal catastrophe, and after that storm, California toughened levee standards in urbanized areas of the Sacramento and San Joaquin Valleys, two major river basins of the Central Valley.
The idea is to keep people out of places where the levees don’t protect against 200-year storms, or those with a 0.5 percent chance of occurring in any year. To account for rising seas and the shifting climate, California requires that levees be recertified as providing this level of defense at least every 20 years.
Firebaugh, Calif., on the San Joaquin River, is home to 8,100 people and helps power the Central Valley’s agricultural economy.
Ben Gallegos, the Firebaugh city manager.
A 6-year-old’s birthday celebration in Firebaugh.
The problem is that once levees are strengthened, the areas behind them often become particularly attractive for development: fancier homes, bigger buildings, more people. The likelihood of a disaster is reduced, but the consequences, should one strike, are increased.
Federal agencies try to stop this by not funding infrastructure projects that induce growth in flood zones. But “it’s almost impossible to generate the local funds to raise that levee if you don’t facilitate some sort of growth behind the levee,” Mr. Peterson said. “You need that economic activity to pay for the project,” he said. “It puts you in a Catch-22.”
A project to provide 200-year protection to the Mossdale Tract, a large area south of Stockton, one of the San Joaquin Valley’s major cities, has been on pause for years because the Army Corps of Engineers fears it would spur growth, said Chris Elias, executive director of the San Joaquin Area Flood Control Agency, which is leading the project. City planners have agreed to freeze development across thousands of acres, but the Corps still hasn’t given its final blessing.
The Corps and state and local agencies will begin studying how best to protect the area this fall, said Tyler M. Stalker, a spokesman for the Corps’s Sacramento District.
The plodding pace of work in the San Joaquin Valley has set people on edge. At a recent public hearing in Stockton on flood risk, Mr. Elias stood up and highlighted some troubling math.
The Department of Water Resources says up to $30 billion in investment is needed over the next 30 years to keep the Central Valley safe. Yet over the past 15 years, the state managed to spend only $3.5 billion.
“We have to find ways to get ahead of the curve,” Mr. Elias said. “We don’t want to have a Katrina 2.0 play out right here in the heart of Stockton.”
As Mr. Elias waits for projects to be approved and budgets to come through, heat and moisture will continue to churn over the Pacific. Government agencies, battling the forces of inertia, indifference and delay, will make plans and update policies. And Stockton and the Central Valley, which runs through the heart of California, will count down the days and years until the inevitable storm.
The Sacramento-San Joaquin Delta near Stockton, Calif.
Sources
The megastorm simulation is based on the “ARkHist” storm modeled by Huang and Swain, Science Advances (2022), a hypothetical statewide, 30-day atmospheric river storm sequence over California with an approximately 2 percent likelihood of occurring each year in the present climate. Data was generated using the Weather Research and Forecasting model and global climate simulations from the Community Earth System Model Large Ensemble.
The chart of precipitation at Oroville compares cumulative rainfall at the Oroville weather station before the 2017 crisis with cumulative rainfall at the closest data point in ARkHist.
The rainfall visualization compares observed hourly rainfall in December 2016 from the Los Angeles Downtown weather station with rainfall at the closest data point in a hypothetical future megastorm, the ARkFuture scenario in Huang and Swain (2022). This storm would be a rare but plausible event in the second half of the 21st century if nations continue on a path of high greenhouse-gas emissions.
Additional credits
The 3D rainfall visualization and augmented reality effect by Nia Adurogbola, Jeffrey Gray, Evan Grothjan, Lydia Jessup, Max Lauter, Daniel Mangosing, Noah Pisner, James Surdam and Raymond Zhong.
Photo editing by Matt McCann.
Produced by Sarah Graham, Claire O’Neill, Jesse Pesta and Nadja Popovich.
Artificial lakes like this one in Dubai are helping fuel an insatiable demand for water in the United Arab Emirates.
As climate change makes the region hotter and drier, the U.A.E. is leading the effort to squeeze more rain out of the clouds, and other countries are rushing to keep up.
Aug. 28, 2022
ABU DHABI, United Arab Emirates — Iranian officials have worried for years that other nations have been depriving them of one of their vital water sources. But it was not an upstream dam that they were worrying about, or an aquifer being bled dry.
In 2018, amid a searing drought and rising temperatures, some senior officials concluded that someone was stealing their water from the clouds.
“Both Israel and another country are working to make Iranian clouds not rain,” Brig. Gen. Gholam Reza Jalali, a senior official in the country’s powerful Revolutionary Guards Corps, said in a 2018 speech.
The unnamed country was the United Arab Emirates, which had begun an ambitious cloud-seeding program, injecting chemicals into clouds to try to force precipitation. Iran’s suspicions are not surprising, given its tense relations with most Persian Gulf nations, but the real purpose of these efforts is not to steal water, but simply to make it rain on parched lands.
As the Middle East and North Africa dry up, countries in the region have embarked on a race to develop the chemicals and techniques that they hope will enable them to squeeze rain drops out of clouds that would otherwise float fruitlessly overhead.
With 12 of the 19 regional countries averaging less than 10 inches of rainfall a year, a decline of 20 percent over the past 30 years, their governments are desperate for any increment of fresh water, and cloud seeding is seen by many as a quick way to tackle the problem.
And as wealthy countries like the emirates pump hundreds of millions of dollars into the effort, other nations are joining the race, trying to ensure that they do not miss out on their fair share of rainfall before others drain the heavens dry — despite serious questions about whether the technique generates enough rainfall to be worth the effort and expense.
Morocco and Ethiopia have cloud-seeding programs, as does Iran. Saudi Arabia just started a large-scale program, and a half-dozen other Middle Eastern and North African countries are considering it.
China has the most ambitious program worldwide, with the aim of either stimulating rain or halting hail across half the country. It is trying to force clouds to rain over the Yangtze River, which is running dry in some spots.
While cloud seeding has been around for 75 years, experts say the science has yet to be proven. And they are especially dismissive of worries about one country draining clouds dry at the expense of others downwind.
The life span of a cloud, in particular the type of cumulus clouds most likely to produce rain, is rarely more than a couple of hours, atmospheric scientists say. Occasionally, clouds can last longer, but rarely long enough to reach another country, even in the Persian Gulf, where seven countries are jammed close together.
But several Middle Eastern countries have brushed aside the experts’ doubts and are pushing ahead with plans to wring any moisture they can from otherwise stingy clouds.
Today, the unquestioned regional leader is the United Arab Emirates. As early as the 1990s, the country’s ruling family recognized that maintaining a plentiful supply of water would be as important as the nation’s huge oil and gas reserves in sustaining its status as the financial and business capital of the Persian Gulf.
While there had been enough water to sustain the tiny country’s population in 1960, when there were fewer than 100,000 people, by 2020 the population had ballooned to nearly 10 million. And the demand for water soared, as well. United Arab Emirates residents now use roughly 147 gallons per person a day, compared with the world average of 47 gallons, according to a 2021 research paper funded by the emirates.
After 20 years of research and experimentation, the center runs its cloud-seeding program with near military protocols. Nine pilots rotate on standby, ready to bolt into the sky as soon as meteorologists focusing on the country’s mountainous regions spot a promising weather formation — ideally, the types of clouds that can build to heights of as much as 40,000 feet.
They have to be ready on a moment’s notice because promising clouds are not as common in the Middle East as in many other parts of the world.
“We are on 24-hour availability — we live within 30 to 40 minutes of the airport — and from arrival here, it takes us 25 minutes to be airborne,” said Capt. Mark Newman, a South African senior cloud-seeding pilot. In the event of multiple, potentially rain-bearing clouds, the center will send more than one aircraft.
The United Arab Emirates uses two seeding substances: the traditional material made of silver iodide and a newly patented substance developed at Khalifa University in Abu Dhabi that uses nanotechnology that researchers there say is better adapted to the hot, dry conditions in the Persian Gulf. The pilots inject the seeding materials into the base of the cloud, allowing it to be lofted tens of thousands of feet by powerful updrafts.
And then, in theory, the seeding material, made up of hygroscopic (water attracting) molecules, bonds to the water vapor particles that make up a cloud. That combined particle is a little bigger and in turn attracts more water vapor particles until they form droplets, which eventually become heavy enough to fall as rain — with no appreciable environmental impact from the seeding materials, scientists say.
That is in theory. But many in the scientific community doubt the efficacy of cloud seeding altogether. A major stumbling block for many atmospheric scientists is the difficulty, perhaps the impossibility, of documenting net increases in rainfall.
“The problem is that once you seed, you can’t tell if the cloud would have rained anyway,” said Alan Robock, an atmospheric scientist at Rutgers University and an expert in evaluating climate engineering strategies.
Another problem is that the tall cumulus clouds most common in summer in the emirates and nearby areas can be so turbulent that it is difficult to determine if the seeding has any effect, said Roy Rasmussen, a senior scientist and an expert in cloud physics at the National Center for Atmospheric Research in Boulder, Colo.
Israel, a pioneer in cloud seeding, halted its program in 2021 after 50 years because it seemed to yield at best only marginal gains in precipitation. It was “not economically efficient,” said Pinhas Alpert, an emeritus professor at the University of Tel Aviv who did one of the most comprehensive studies of the program.
Cloud seeding got its start in 1947, with General Electric scientists working under a military contract to find a way to de-ice planes in cold weather and create fog to obscure troop movements. Some of the techniques were later used in Vietnam to prolong the monsoon season, in an effort to make it harder for the North Vietnamese to supply their troops.
While the underlying science of cloud seeding seems straightforward, in practice, there are numerous problems. Not all clouds have the potential to produce rain, and even a cloud seemingly suitable for seeding may not have enough moisture. Another challenge in hot climates is that raindrops may evaporate before they reach the ground.
Sometimes the effect of seeding can be larger than expected, producing too much rain or snow. Or the winds can shift, carrying the clouds away from the area where the seeding was done, raising the possibility of “unintended consequences,” notes a statement from the American Meteorological Society.
“You can modify a cloud, but you can’t tell it what to do after you modify it,” said James Fleming, an atmospheric scientist and historian of science at Colby College in Maine.
“It might snow; it might dissipate. It might go downstream; it might cause a storm in Boston,” he said, referring to an early cloud-seeding experiment over Mount Greylock in the Berkshire Mountains of western Massachusetts.
This seems to be what happened in the emirates in the summer of 2019, when cloud seeding apparently generated such heavy rains in Dubai that water had to be pumped out of flooded residential neighborhoods and the upscale Dubai mall.
Despite the difficulties of gathering data on the efficacy of cloud seeding, Mr. Al Mandous said the emirates’ methods were yielding at least a 5 percent increase in rain annually — and almost certainly far more. But he acknowledged the need for data covering many more years to satisfy the scientific community.
Over last New Year’s weekend, said Mr. Al Mandous, cloud seeding coincided with a storm that produced 5.6 inches of rain in three days — more precipitation than the United Arab Emirates often gets in a year.
In the tradition of many scientists who have tried to modify the weather, he is ever optimistic. There is the new cloud-seeding nanosubstance, and if the emirates just had more clouds to seed, he said, maybe they could make more rain for the country.
And where would those extra clouds come from?
“Making clouds is very difficult,” he acknowledged. “But, who knows, maybe God will send us somebody who will have the idea of how to make clouds.”
Giant rainstorms have ravaged California before. Times journalists combined data, graphics and old-fashioned reporting to explore what the next big one might look like.
Credit: Erin Schaff/The New York Times
Aug. 25, 2022
Times Insider explains who we are and what we do and delivers behind-the-scenes insights into how our journalism comes together.
Not long ago, when I heard that California officials were embarking on an ambitious, multiyear effort to study one of the worst natural disasters in the state’s history, I knew there would be a lot of interesting material to cover. There was just one wrinkle: The disaster hadn’t happened yet — it still hasn’t.
The California water authorities wanted to examine a much bigger and more powerful version of the rainstorms the state often gets in winter. The milder ones replenish water supplies. But the strong ones cause devastating flooding and debris flows. And the really strong ones, like those that have hit the Pacific Coast several times over the past millennium, can erase whole landscapes, turning valleys and plains into lakes.
As global warming increases the likelihood and the intensity of severe storms, the state’s Department of Water Resources wanted to know: What would a really big (yet plausible) storm look like today? How well would we handle it?
As a climate reporter for The New York Times, I had a pretty good idea of how to tell the first part of the story. The department was starting its study by commissioning two climate scientists to construct a detailed play-by-play of how a monthlong storm might unload its precipitation throughout the state. (And what a lot of precipitation it would be: nearly 16 inches, on average, across California, according to the scientists’ simulations, and much more in mountainous areas.)
All that detail would help operators of dams and other infrastructure pinpoint how much water they might get at specific times and places. It would also allow the graphics wizards at The Times to bring the storm to stunning visual life in our article, which we published this month.
But to make the article more than an academic recounting of a computer-modeling exercise, I knew I had to find ways to ground this future storm strongly in the present. And as I started reporting, I realized this was what a lot of people in the flood-management world were trying to do, too. Unlike traffic congestion, air pollution or even drought, flood risk isn’t in people’s faces most of the time. Forecasters and engineers have to keep reminding them that it’s there.
I realized this wasn’t a story about predicting the future at all. Like a lot of climate stories, it was about how humans and institutions function, or fail to function, when faced with catastrophic possibilities whose arrival date is uncertain.
The near-catastrophe Californians remember most vividly is the 2017 crisis at the Oroville Dam, north of Sacramento. The dam’s emergency spillway nearly collapsed after heavy rainstorms, prompting the evacuation of 188,000 people. The state authorities spent the next few years reinspecting dams and re-evaluating safety needs. Yet I found signs that all this attention might already be starting to fade, even when it came to Oroville itself.
For every example of proactive thinking on flood risks, I found instances where budgets, political exigencies or other complications had gotten in the way. I visited flood-prone communities in the Sacramento-San Joaquin Delta with Kathleen Schaefer, an engineer formerly with the Federal Emergency Management Agency. She helped prepare the last major study of a hypothetical California megastorm, over a decade ago, and she recalled the frosty reception her and her colleagues’ work had received in some official circles.
She described the attitude she encountered this way: “If you can’t do anything about it, if it’s such a big problem, then you don’t want to stick your head out and raise it, because then you’re supposed to do something about it. So it’s better just to be like, ‘Oh, I hope it doesn’t happen on my watch.’”
I also sought out Californians who had suffered the effects of flooding firsthand. One reason the state is so vulnerable is that so many people and their homes and assets are in inundation-prone places. The reasons they stay, despite the dangers, are complex and often deeply personal.
Rudy Mussi has lived through two devastating levee failures near his land, in a part of the Delta called the Jones Tract. Neither experience made him want to go farm somewhere else. He recently invested millions in almond trees.
“Even though there’s risk,” Mr. Mussi told me, “there’s people willing to take that risk.”
Bob Ott grows cherries, almonds and walnuts in the fertile soil along the Tuolumne River. As we drove through his orchards on a rickety golf cart, he showed me where the water had rushed in during the 2017 storms.
Mr. Ott said he knew his land was bound to flood again, whether from a repeat of rains past or from a future megastorm. Still, he would never consider leaving, he said. His family has been farming there for the better part of a century. “This is part of us,” he said.
Crise climática impacta chuvas, e dois terços do país enfrentam problemas no fornecimento de água
Maria Abi-Habib e Bryan Avelar
7 de agosto de 2022
O homem vestindo um boné de beisebol azul enche baldes com água de um caminhão do governo. Fonte: New York Times
O México —ou grande parte do país— está ficando sem água. Uma seca extrema tem deixado as torneiras secas, e quase dois terços dos municípios enfrentam escassez que vem obrigando as pessoas a encarar horas em filas para entregas de água feitas pelo governo em alguns locais.
A falta d’água está tão grave que moradores já fizeram barreiras em rodovias e sequestraram funcionários para exigir mais carregamentos. Os números são mesmo assustadores: em julho, 8 dos 32 estados enfrentaram estiagem de extrema a moderada, levando 1.546 dos 2.463 municípios a enfrentar cortes no fornecimento, segundo a Comissão Nacional de Água.
Em meados de julho, a seca atingia 48% do território do México —no ano passado, a situação afetou 28% do país.
Vincular uma seca isolada à crise climática requer análise, mas cientistas não têm dúvida de que o aquecimento global pode alterar os padrões de chuva no mundo e está elevando a probabilidade de ocorrência de secas.
A crise está especialmente aguda em Monterrey, um dos centros econômicos mais importantes do México, com uma região metropolitana de 5 milhões de habitantes. Alguns bairros estão sem água há 75 dias, levando escolas a fechar as portas antes das férias de verão. Um jornalista percorreu várias lojas à procura de água potável, incluindo um supermercado Walmart, em vão.
Baldes estão em falta no comércio ou são vendidos a preços astronômicos, enquanto os habitantes juntam recipientes para coletar a água distribuída por caminhões enviados aos bairros mais afetados. Alguns usam latas de lixo limpas, e crianças lutam para ajudar a carregar a água.
A crise afeta inclusive as regiões de alta renda. “Aqui a gente tem que sair à caça de água”, diz Claudia Muñiz, 38, cuja família frequentemente tem passado uma semana sem água corrente. “Num momento de desespero, as pessoas explodem.”
Monterrey fica no norte do México e viu sua população crescer nos últimos anos, acompanhando o boom econômico. O clima tipicamente árido da região não ajuda a suprir as necessidades da população, e a crise climática reduz as chuvas já escassas.
Hoje os moradores podem caminhar sobre o leito da represa da barragem de Cerro Prieto, que no passado era uma das maiores fontes de água da cidade e uma importante atração turística, com animados restaurantes à beira da água, pesca, passeios de barco e esqui aquático.
A chuva que caiu em julho em partes do estado de Nuevo León, que faz divisa com o Texas e cuja capital é Monterrey, representou apenas 10% da média mensal registrada desde 1960, segundo Juan Ignacio Barragán Villareal, diretor-geral da agência local de recursos hídricos. “Nem uma gota caiu no estado inteiro em março”, diz. Foi o primeiro março sem chuvas desde que se começou a registrar esses dados, em 1960.
Hoje o governo distribui 9 milhões de litros de água por dia para 400 bairros. O motorista de caminhão-pipa Alejandro Casas conta que, quando começou na função há cinco anos, ajudava os bombeiros e era chamado uma ou duas vezes por mês para levar água a um local incendiado. Ele passava muitos dias de trabalho apenas olhando para o telefone.
Mas desde janeiro ele trabalha sem parar, fazendo até dez viagens por dia, para suprir cerca de 200 famílias a cada vez. Quando ele chega a um local, uma longa fila já serpenteia pelas ruas. Pessoas levam recipientes que comportam até 200 litros e passam a tarde sob o sol para receber água só à meia-noite —e ela pode ser a única entregue por até uma semana.
Ninguém policia as filas, por isso é comum ocorrerem brigas, com moradores de outras comunidades tentando se infiltrar. Em maio o caminhão de Casas foi assaltado por jovens que subiram no assento do passageiro e o ameaçaram, exigindo que ele levasse o veículo ao bairro deles. “Se a gente não fosse para onde eles queriam, iam nos sequestrar.”
Casas seguiu a ordem, encheu os baldes dos moradores e foi libertado.
Maria de los Angeles, 45, nasceu e cresceu em Ciénega de Flores, cidade próxima a Monterrey. Ela diz que a crise está afetando sua família e seu negócio. “Nunca antes vi isso. Só temos água nas torneiras a cada quatro ou cinco dias”, diz.
O viveiro de plantas de jardim é a única fonte de renda de sua família e requer mais água do que a que chega apenas ocasionalmente às torneiras. “Toda semana sou obrigada a comprar um tanque que me custa 1.200 pesos [R$ 300] de um fornecedor particular”, diz. É metade de sua receita semanal. “Não aguento mais.”
Pequenos e microempresários como ela estão frustrados por serem abandonados à própria sorte, enquanto as grandes indústrias podem operar quase normalmente: as fábricas conseguem receber 50 milhões de metros cúbicos de água por ano, devido a concessões federais que lhes garantem acesso especial aos aquíferos da cidade.
O governo está tendo dificuldade em responder à crise. Para tentar mitigar estiagens futuras, o estado está investindo US$ 97 milhões na construção de uma estação de tratamento de águas servidas e pretende comprar água de uma estação de dessalinização em construção num estado vizinho. Também gastou US$ 82 milhões para alugar mais caminhões, pagar motoristas adicionais e cavar mais poços.
O governador de Nuevo León, Samuel García, recentemente exortou o mundo a agir em conjunto para combater a crise climática. “Ela nos alcançou”, escreveu no Twitter. “Hoje precisamos cuidar do ambiente, é uma questão de vida ou morte.”
O mundo vive um inferno astral de ameaças de curto e longo prazo. Em brilhante palestra recente, Tharman Shanmugaratnam, ministro sênior de Singapura, listou cinco riscos que, para ele, configuram uma “longa tempestade perfeita” para o planeta. Neste artigo, discutirei as implicações desse quadro para o Brasil, procurando também identificar as oportunidades disponíveis.
O pano de fundo é conhecido. Ao acordar do sonho do mundo pacífico e integrado do fim da história de Fukuyama, nos deparamos com crescentes tensões, que se manifestam em múltiplas esferas. A mais chocante de todas e primeiro tema da lista de Tharman é a tragédia ucraniana, que configura o rompimento de uma governança global que garantia a soberania e a integridade territorial de todas as nações.
A esse retorno da Guerra Fria original, de natureza ideológica (modificada) e militar, se soma a Guerra Fria.2 entre os Estados Unidos e a China, também ideológica, mas muito mais complexa em suas frentes de disputa.
O embate entre os dois gigantes caracteriza um período de ausência de uma liderança global hegemônica que, como bem diagnosticou Charles P. Kindleberger, tende a ser muito instável. Do ponto de vista econômico, as duas guerras frias forçosamente demandam um importante repensar de alianças e relações de produção e comércio globais.
Para o Brasil, será necessário retornar à política externa tradicional do Itamaraty, voltada para a busca do interesse nacional através de boas relações viabilizadas pelo nosso histórico apego a princípios universais e pela nossa natural vocação multilateral. Nos cabe primeiramente e o quanto antes uma defesa inequívoca da integridade de todas as nações. Temos também que zelar pela manutenção de relações mutuamente benéficas com a maior parte dos países.
Em seu segundo grande tema, o autor discute o perigo de uma prolongada estagflação. O epicentro do problema encontra-se nos Estados Unidos, onde uma economia superaquecida por políticas expansionistas vem sendo atingida pelos choques de oferta da pandemia e das guerras frias. Para o Brasil, o risco maior advém da real possibilidade de o banco central americano ter de elevar os juros bem além do que os mercados já antecipam. Nos faria lembrar da frase “quando o Norte espirra, o Sul pega pneumonia”.
Um cenário alternativo, também nada reconfortante, seria uma queda ainda maior das Bolsas, acompanhada de um novo colapso nos preços dos imóveis, hoje acima em termos reais dos níveis da bolha que estourou em 2008.
Do lado de cá, o quadro é ainda mais complicado do que nos Estados Unidos, pois mesmo em recessão a inflação atingiu dois dígitos. Não é difícil imaginar uma tempestade perfeita para o Brasil, onde desafios externos e internos se reforçam. O próximo presidente terá que conduzir a política econômica com coragem e competência, de preferência com o apoio qualitativo das respostas aos demais desafios, que discuto a seguir.
A ameaça existencial da mudança climática é o terceiro tema do discurso. Aqui o Brasil terá a oportunidade de promover uma guinada verdadeiramente alquímica: trocar uma posição de pária ambiental, decorrente de posturas que aumentaram o desmatamento e o crime organizado, por uma guinada que nos poria em uma posição de liderança global no tema, com consequências extremamente positivas fora e dentro do país.
A criação de um mercado de carbono, como vem sendo discutido no Congresso e prometido pelo Executivo, seria um passo essencial nessa direção. É fundamental que o mercado seja desenhado de forma a permitir a plena inserção do país no mercado global de carbono, alternativa não disponível no momento. Vejo amplo potencial para investimentos no setor, em ambiente de concorrência e plenamente alinhados com o interesse público (estou investindo nessa área).
O elevado risco de novas pandemias vem a seguir. A ciência recomenda todo cuidado com o tema. Aqui também vejo amplo espaço para um cavalo de pau. Será necessário reforçar sob todos os ângulos o SUS, que, com seus 4% do PIB de recursos, precisa urgentemente subir na escala de prioridades dos orçamentos de todas as esferas de governo.
Cabe também incluir nas prioridades da nação mais apoio à pesquisa. Fontes de recursos para tais esforços não faltam, como tenho argumentado aqui. Falta sim transparência orçamentária e vontade política.
Em último lugar na lista, mas não menos importante, são as desigualdades de crescimento e bem-estar dentro dos países e entre eles, os mais ricos em vantagem em ambos os casos. Essa situação vem se agravando com as “tempestades perfeitas” e representa um terreno fértil para populismos e autoritarismos. O Brasil tem muito a fazer nessa área.
Com sucesso nessas frentes, o Brasil se qualificaria para ser relevante na reconstrução de uma governança global ora em frangalhos. As vantagens seriam imensas, pois ajudaria a si próprio em tudo mais. No entanto, sem sucesso, os prejuízos para a população seriam enormes. Um futuro melhor só virá se e quando a nossa democracia não mais estiver ameaçada e um tanto disfuncional.
We can reduce global temperatures faster than we once thought — if we act now
One of the biggest obstacles to avoiding global climate breakdown is that so many people think there’s nothing we can do about it.
They point out that record-breaking heat waves, fires and storms are already devastating communities and economies throughout the world. And they’ve long been told that temperatures will keep rising for decades to come, no matter how many solar panels replace oil derricks or how many meat-eaters go vegetarian. No wonder they think we’re doomed.
But climate science actually doesn’t say this. To the contrary, the best climate science you’ve probably never heard of suggests that humanity can still limit the damage to a fraction of the worst projections if — and, we admit, this is a big if — governments, businesses and all of us take strong action starting now.
For many years, the scientific rule of thumb was that a sizable amount of temperature rise was locked into the Earth’s climate system. Scientists believed — and told policymakers and journalists, who in turn told the public — that even if humanity hypothetically halted all heat-trapping emissions overnight, carbon dioxide’s long lifetime in the atmosphere, combined with the sluggish thermal properties of the oceans, would nevertheless keep global temperatures rising for 30 to 40 more years. Since shifting to a zero-carbon global economy would take at least a decade or two, temperatures were bound to keep rising for at least another half-century.
But guided by subsequent research, scientists dramatically revised that lag time estimate down to as little as three to five years. That is an enormous difference that carries paradigm-shifting and broadly hopeful implications for how people, especially young people, think and feel about the climate emergency and how societies can respond to it.
This revised science means that if humanity slashes emissions to zero, global temperatures will stop rising almost immediately. To be clear, this is not a get-out-of-jail-free card. Global temperatures will not fall if emissions go to zero, so the planet’s ice will keep melting and sea levels will keep rising. But global temperatures will stop their relentless climb, buying humanity time to devise ways to deal with such unavoidable impacts. In short, we are not irrevocably doomed — or at least we don’t have to be, if we take bold, rapid action.
The science we’re referencing was included — but buried — in the United Nations Intergovernmental Panel on Climate Change’s most recent report, issued in August. Indeed, it was first featured in the IPCC’s landmark 2018 report, “Global warming of 1.5 C.”That report’s key finding — that global emissions must fall by 45 percent by 2030 to avoid catastrophic climate disruption — generated headlines declaring that we had “12 years to save the planet.” That 12-year timeline, and the related concept of a “carbon budget” — the amount of carbon that can be burned while still limiting temperature rise to 1.5 degrees Celsius above preindustrial levels — were both rooted in this revised science. Meanwhile, the public and policy worlds have largely neglected the revised science that enabled these very estimates.
Nonscientists can reasonably ask: What made scientists change their minds? Why should we believe their new estimate of a three-to-five-year lag time if their previous estimate of 30 to 40 years is now known to be incorrect? And does this mean the world still must cut emissions in half by 2030 to avoid climate catastrophe?
The short answer to the last question is yes. Remember, temperatures only stop rising once global emissions fall to zero. Currently, emissions are not falling. Instead, humanity continues to pump approximately 36 billion tons of carbon dioxide a year into the atmosphere. The longer it takes to cut those 36 billion tons to zero, the more temperature rise humanity eventually will face. And as the IPCC’s 2018 report made hauntingly clear, pushing temperatures above 1.5 degrees C would cause unspeakable amounts of human suffering, economic loss and social breakdown — and perhaps trigger genuinely irreversible impacts.
Scientists changed their minds about how much warming is locked in because additional research gave them a much better understanding of how the climate system works. Their initial 30-to-40-year estimates were based on relatively simple computer models that treated the concentration of carbon dioxide in the atmosphere as a “control knob” that determines temperature levels. The long lag in the warming impact is due to the oceans, which continue to warm long after the control knob is turned up. More recent climate models account for the more dynamic nature of carbon emissions. Yes, CO2 pushes temperatures higher, but carbon “sinks,” including forests and in particular the oceans, absorb almost half of the CO2 that is emitted, causing atmospheric CO2 levels to drop, offsetting the delayed warming effect.
Knowing that 30 more years of rising temperatures are not necessarily locked in can be a game-changer for how people, governments and businesses respond to the climate crisis. Understanding that we can still save our civilization if we take strong, fast action can banish the psychological despair that paralyzes people and instead motivate them to get involved. Lifestyle changes can help, but that involvement must also include political engagement. Slashing emissions in half by 2030 demands the fastest possible transition away from today’s fossil-fueled economies in favor of wind, solar and other non-carbon alternatives. That can happen only if governments enact dramatically different policies. If citizens understand that things aren’t hopeless, they can better push elected officials to make such changes.
As important as minimizing temperature rise is to the United States, where last year’s record wildfires in California and the Pacific Northwest illustrated just how deadly climate change can be, it matters most in the highly climate-vulnerable communities throughout the global South. Countless people in Bangladesh, the Philippines, Madagascar, Africa’s Sahel nations, Brazil, Honduras and other low-income countries have already been suffering from climate disasters for decades because their communities tend to be more exposed to climate impacts and have less financial capacity to protect themselves. For millions of people in such countries, limiting temperature rise to 1.5 degrees C is not a scientific abstraction.
The IPCC’s next report, due for release Feb. 28, will address how societies can adapt to the temperature rise now underway and the fires, storms and rising seas it unleashes. If we want a livable future for today’s young people, temperature rise must be kept as close as possible to 1.5 C. The best climate science most people have never heard of says that goal remains within reach. The question is whether enough of us will act on that knowledge in time.
With global warming no longer just a threat but a full-blown crisis, Columbia experts are on the frontlines, documenting the dangers and developing solutions.
1. More scientists are investigating ways to help people adapt
Over the past half century, thousands of scientists around the world have dedicated their careers to documenting the link between climate change and human activity. A remarkable amount of this work has been done at Columbia’s Lamont-Doherty Earth Observatory, in Palisades, New York. Indeed, one of the founders of modern climate science, the late Columbia geochemist Wally Broecker ’53CC, ’58GSAS, popularized the term “global warming” and first alerted the broader scientific community to the emerging climate crisis in a landmark 1975 paper. He and other Columbia researchers then set about demonstrating that rising global temperatures could not be explained by the earth’s natural long-term climate cycles. For evidence, they relied heavily on Columbia’s world-class collections of tree-ring samples and deep-sea sediment cores, which together provide a unique window into the earth’s climate history.
Today, experts say, the field of climate science is in transition. Having settled the question of whether humans are causing climate change — the evidence is “unequivocal,” according to the UN’s Intergovernmental Panel on Climate Change (IPCC) — many scientists have been branching out into new areas, investigating the myriad ways that global warming is affecting our lives. Columbia scholars from fields as diverse as public health, agriculture, economics, law, political science, urban planning, finance, and engineering are now teaming up with climate scientists to learn how communities can adapt to the immense challenges they are likely to confront.
The University is taking bold steps to support such interdisciplinary thinking. Its new Columbia Climate School, established last year, is designed to serve as a hub for research and education on climate sustainability. Here a new generation of students will be trained to find creative solutions to the climate crisis. Its scholars are asking questions such as: How can communities best protect themselves from rising sea levels and intensifying storm surges, droughts, and heat waves? When extreme weather occurs, what segments of society are most vulnerable? And what types of public policies and ethical principles are needed to ensure fair and equitable adaptation strategies? At the same time, Columbia engineers, physicists, chemists, data scientists, and others are working with entrepreneurs to develop the new technologies that are urgently needed to scale up renewable-energy systems and curb emissions.
“The challenges that we’re facing with climate change are so huge, and so incredibly complex, that we need to bring people together from across the entire University to tackle them,” says Alex Halliday, the founding dean of the Columbia Climate School and the director of the Earth Institute. “Success will mean bringing the resources, knowledge, and capacity of Columbia to the rest of the world and guiding society toward a more sustainable future.”
For climate scientists who have been at the forefront of efforts to document the effects of fossil-fuel emissions on our planet, the shift toward helping people adapt to climate change presents new scientific challenges, as well as the opportunity to translate years of basic research into practical, real-world solutions.
“A lot of climate research has traditionally looked at how the earth’s climate system operates at a global scale and predicted how a given amount of greenhouse-gas emissions will affect global temperatures,” says Adam Sobel, a Columbia applied physicist, mathematician, and climate scientist. “The more urgent questions we face now involve how climate hazards vary across the planet, at local or regional scales, and how those variations translate into specific risks to human society. We also need to learn to communicate climate risks in ways that can facilitate actions to reduce them. This is where climate scientists need to focus more of our energy now, if we’re to maximize the social value of our work.”
A firefighter battles the Caldor Fire in Grizzly Flats, California, last summer. (Fred Greaves / Reuters)
2. Big data will enable us to predict extreme weather
Just a few years ago, scientists couldn’t say with any confidence how climate change was affecting storms, floods, droughts, and other extreme weather around the world. But now, armed with unprecedented amounts of real-time and historical weather data, powerful new supercomputers, and a rapidly evolving understanding of how different parts of our climate system interact, researchers are routinely spotting the fingerprints of global warming on our weather.
“Of course, no individual weather event can be attributed solely to climate change, because weather systems are highly dynamic and subject to natural variability,” says Sobel, who studies global warming’s impact on extreme weather. “But data analysis clearly shows that global warming is tilting the scales of nature in a way that is increasing both the frequency and intensity of certain types of events, including heat waves, droughts, and floods.”
According to the World Meteorological Organization, the total number of major weather-related disasters to hit the world annually has increased five-fold since the 1970s. In 2021, the US alone endured eighteen weather-related disasters that caused at least $1 billion in damages. Those included Hurricanes Ida and Nicholas; tropical storms Fred and Elsa; a series of thunderstorms that devastated broad swaths of the Midwest; floods that overwhelmed the coasts of Texas and Louisiana; and a patchwork of wildfires that destroyed parts of California, Oregon, Washington, Idaho, Montana, and Arizona. In 2020, twenty-two $1 billion events struck this country — the most ever.
“The pace and magnitude of the weather disasters we’ve seen over the past couple of years are just bonkers,” says Sobel, who studies the atmospheric dynamics behind hurricanes. (He notes that while hurricanes are growing stronger as a result of climate change, scientists are not yet sure if they are becoming more common.) “Everybody I know who studies this stuff is absolutely stunned by it. When non-scientists ask me what I think about the weather these days, I say, ‘If it makes you worried for the future, it should, because the long-term trend is terrifying.’”
The increasing ferocity of our weather, scientists say, is partly attributable to the fact that warmer air can hold more moisture. This means that more water is evaporating off oceans, lakes, and rivers and accumulating in the sky, resulting in heavier rainstorms. And since hot air also wicks moisture out of soil and vegetation, regions that tend to receive less rainfall, like the American West, North Africa, the Middle East, and Central Asia, are increasingly prone to drought and all its attendant risks. “Climate change is generally making wet areas wetter and dry regions drier,” Sobel says.
Flooding killed at least three hundred people in China’s Henan Province in July. (Cai Yang / Xinhua via Getty Images)
But global warming is also altering the earth’s climate system in more profound ways. Columbia glaciologist Marco Tedesco, among others, has found evidence that rising temperatures in the Arctic are weakening the North Atlantic jet stream, a band of westerly winds that influence much of the Northern Hemisphere’s weather. These winds are produced when cold air from the Arctic clashes with warm air coming up from the tropics. But because the Arctic is warming much faster than the rest of the world, the temperature differential between these air flows is diminishing and causing the jet stream to slow down and follow a more wobbly path. As a result, scientists have discovered, storm systems and pockets of hot or cold air that would ordinarily be pushed along quickly by the jet stream are now sometimes hovering over particular locations for days, amplifying their impact. Experts say that the jet stream’s new snail-like pace may explain why a heavy rainstorm parked itself over Zhengzhou, China, for three days last July, dumping an entire year’s worth of precipitation, and why a heat wave that same month brought 120-degree temperatures and killed an estimated 1,400 people in the northwestern US and western Canada.
Many Columbia scientists are pursuing research projects aimed at helping communities prepare for floods, droughts, heat waves, and other threats. Sobel and his colleagues, for example, have been using their knowledge of hurricane dynamics to develop an open-source computer-based risk-assessment model that could help policymakers in coastal cities from New Orleans to Mumbai assess their vulnerability to cyclones as sea levels rise and storms grow stronger. “The goal is to create analytic tools that will reveal how much wind and flood damage would likely occur under different future climate scenarios, as well as the human and economic toll,” says Sobel, whose team has sought input from public-health researchers, urban planners, disaster-management specialists, and civil engineers and is currently collaborating with insurance companies as well as the World Bank, the International Red Cross, and the UN Capital Development Fund. “Few coastal cities have high-quality information of this type, which is necessary for making rational adaptation decisions.”
Radley Horton ’07GSAS, another Columbia climatologist who studies weather extremes; Christian Braneon, a Columbia civil engineer and climate scientist; and Kim Knowlton ’05PH and Thomas Matte, Columbia public-health researchers, are members of the New York City Panel on Climate Change, a scientific advisory body that is helping local officials prepare for increased flooding, temperature spikes, and other climate hazards. New York City has acted decisively to mitigate and adapt to climate change, in part by drawing on the expertise of scientists from Columbia and other local institutions, and its city council recently passed a law requiring municipal agencies to develop a comprehensive long-term plan to protect all neighborhoods against climate threats. The legislation encourages the use of natural measures, like wetland restoration and expansion, to defend against rising sea levels. “There’s a growing emphasis on attending to issues of racial justice as the city develops its adaptation strategies,” says Horton. “In part, that means identifying communities that are most vulnerable to climate impacts because of where they’re located or because they lack resources. We want to make sure that everybody is a part of the resilience conversation and has input about what their neighborhoods need.”
Horton is also conducting basic research that he hopes will inform the development of more geographically targeted climate models. For example, in a series of recent papers on the atmospheric and geographic factors that influence heat waves, he and his team discovered that warm regions located near large bodies of water have become susceptible to heat waves of surprising intensity, accompanied by dangerous humidity. His team has previously shown that in some notoriously hot parts of the world — like northern India, Bangladesh, and the Persian Gulf — the cumulative physiological impact of heat and humidity can approach the upper limits of human tolerance. “We’re talking about conditions in which a perfectly healthy person could actually die of the heat, simply by being outside for several hours, even if they’re resting and drinking plenty of water,” says Horton, explaining that when it is extremely humid, the body loses its ability to sufficiently perspire, which is how it cools itself. Now his team suspects that similarly perilous conditions could in the foreseeable future affect people who live near the Mediterranean, the Black Sea, the Caspian Sea, or even the Great Lakes. “Conditions in these places probably won’t be quite as dangerous as what we’re seeing now in South Asia or the Middle East, but people who are old, sick, or working outside will certainly be at far greater risk than they are today,” Horton says. “And communities will be unprepared, which increases the danger.”
How much worse could the weather get? Over the long term, that will depend on us and how decisively we act to reduce our fossil-fuel emissions. But conditions are likely to continue to deteriorate over the next two to three decades no matter what we do, since the greenhouse gases that we have already added to the atmosphere will take years to dissipate. And the latest IPCC report states that every additional increment of warming will have a larger, more destabilizing impact. Of particular concern, the report cautions, is that in the coming years we are bound to experience many more “compound events,” such as when heat waves and droughts combine to fuel forest fires, or when coastal communities get hit by tropical storms and flooding rivers simultaneously.
“A lot of the extreme weather events that we’ve been experiencing lately are so different from anything we’ve seen that nobody saw them coming,” says Horton, who points out that climate models, which remain our best tool for projecting future climate risks, must constantly be updated with new data as real-world conditions change. “What’s happening now is that the conditions are evolving so rapidly that we’re having to work faster, with larger and more detailed data sets, to keep pace.”
Soybean yields in many parts of the world are expected to drop as temperatures rise. (Rory Doyle / Bloomberg via Getty Images)
3. The world’s food supply is under threat
“A warmer world could also be a hungry one, even in the rich countries,” writes the Columbia environmental economist Geoffrey Heal in his latest book, Endangered Economies: How the Neglect of Nature Threatens Our Prosperity. “A small temperature rise and a small increase in CO2 concentrations may be good for crops, but beyond a point that we will reach quickly, the productivity of our present crops will drop, possibly sharply.”
Indeed, a number of studies, including several by Columbia scientists, have found that staple crops like corn, rice, wheat, and soybeans are becoming more difficult to cultivate as the planet warms. Wolfram Schlenker, a Columbia economist who studies the impact of climate change on agriculture, has found that corn and soybean plants exposed to temperatures of 90°F or higher for just a few consecutive days will generate much less yield. Consequently, he has estimated that US output of corn and soybeans could decline by 30 to 80 percent this century, depending on how high average temperatures climb.
“This will reduce food availability and push up prices worldwide, since the US is the largest producer and exporter of these commodities,” Schlenker says.
There is also evidence that climate change is reducing the nutritional value of our food. Lewis Ziska, a Columbia professor of environmental health sciences and an expert on plant physiology, has found that as CO2 levels rise, rice plants are producing grains that contain less protein and fewer vitamins and minerals. “Plant biology is all about balance, and when crops suddenly have access to more CO2 but the same amount of soil nutrients, their chemical composition changes,” he says. “The plants look the same, and they may even grow a little bit faster, but they’re not as good for you. They’re carbon-rich and nutrient-poor.” Ziska says that the molecular changes in rice that he has observed are fairly subtle, but he expects that as CO2 levels continue to rise over the next two to three decades, the changes will become more pronounced and have a significant impact on human health. “Wheat, barley, potatoes, and carrots are also losing some of their nutritional value,” he says. “This is going to affect everybody — but especially people in developing countries who depend on grains like wheat and rice for most of their calories.”
Experts also worry that droughts, heat waves, and floods driven by climate change could destroy harvests across entire regions, causing widespread food shortages. A major UN report coauthored by Columbia climate scientist Cynthia Rosenzweig in 2019 described the growing threat of climate-induced hunger, identifying Africa, South America, and Asia as the areas of greatest susceptibility, in part because global warming is accelerating desertification there. Already, some eight hundred million people around the world are chronically undernourished, and that number could grow by 20 percent as a result of climate change in the coming decades, the report found.
In hopes of reversing this trend, Columbia scientists are now spearheading ambitious efforts to improve the food security of some of the world’s most vulnerable populations. For example, at the International Research Institute for Climate and Society (IRI), which is part of the Earth Institute, multidisciplinary teams of climatologists and social scientists are working in Ethiopia, Senegal, Colombia, Guatemala, Bangladesh, and Vietnam to minimize the types of crop losses that often occur when climate change brings more sporadic rainfall. The IRI experts, whose work is supported by Columbia World Projects, are training local meteorologists, agricultural officials, and farmers to use short-term climate-prediction systems to anticipate when an upcoming season’s growing conditions necessitate using drought-resistant or flood-resistant seeds. They can also suggest more favorable planting schedules. To date, they have helped boost crop yields in dozens of small agricultural communities.
“This is a versatile approach that we’re modeling in six nations, with the hope of rolling it out to many others,” says IRI director John Furlow. “Agriculture still dominates the economies of most developing countries, and in order to succeed despite increasingly erratic weather, farmers need to be able to integrate science into their decision-making.”
South Sudanese refugees gather at a camp in Uganda. (Dan Kitwood / Getty Images)
4. We need to prepare for massive waves of human migration
For thousands of years,the vast majority of the human population has lived in a surprisingly narrow environmental niche, on lands that are fairly close to the equator and offer warm temperatures, ample fresh water, and fertile soils.
But now, suddenly, the environment is changing. The sun’s rays burn hotter, and rainfall is erratic. Some areas are threatened by rising sea levels, and in others the land is turning to dust, forests to kindling. What will people do in the coming years? Will they tough it out and try to adapt, or will they migrate in search of more hospitable territory?
Alex de Sherbinin, a Columbia geographer, is among the first scientists attempting to answer this question empirically. In a series of groundbreaking studies conducted with colleagues at the World Bank, the Potsdam Institute for Climate Impact Research, New York University, Baruch College, and other institutions, he has concluded that enormous waves of human migration will likely occur this century unless governments act quickly to shift their economies away from fossil fuels and thereby slow the pace of global warming. His team’s latest report, published this fall and based on a comprehensive analysis of climatic, demographic, agricultural, and water-use data, predicts that up to 215 million people from Asia, Eastern Europe, Africa, and Latin America — mostly members of agricultural communities, but also some city dwellers on shorelines — will permanently abandon their homes as a result of droughts, crop failures, and sea-level rise by 2050.
“And that’s a conservative estimate,” says de Sherbinin, a senior research scientist at Columbia’s Center for International Earth Science Information Network. “We’re only looking at migration that will occur as the result of the gradual environmental changes occurring where people live, not massive one-time relocations that might be prompted by natural disasters like typhoons or wildfires.”
De Sherbinin and his colleagues do not predict how many climate migrants will ultimately cross international borders in search of greener pastures. Their work to date has focused on anticipating population movements within resource-poor countries in order to help governments develop strategies for preventing exoduses of their own citizens, such as by providing struggling farmers with irrigation systems or crop insurance. They also identify cities that are likely to receive large numbers of new residents from the surrounding countryside, so that local governments can prepare to accommodate them. Among the regions that will see large-scale population movements, the researchers predict, is East Africa, where millions of smallholder farmers will abandon drought-stricken lands and flock to cities like Kampala, Nairobi, and Lilongwe. Similarly, agricultural communities across Latin America, devastated by plummeting corn, bean, and coffee yields, will leave their fields and depart for urban centers. And in Southeast Asia, rice farmers and fishing families in increasingly flood-prone coastal zones like Vietnam’s Mekong Delta, home to twenty-one million people, will retreat inland.
But these migrations, if they do occur, do not necessarily need to be tragic or chaotic affairs, according to de Sherbinin. In fact, he says that with proper planning, and with input from those who are considering moving, it is even possible that large-scale relocations could be organized in ways that ultimately benefit everybody involved, offering families of subsistence farmers who would otherwise face climate-induced food shortages a new start in more fertile locations or in municipalities that offer more education, job training, health care, and other public services.
“Of course, wealthy nations should be doing more to stop climate change and to help people in developing countries adapt to environmental changes, so they have a better chance of thriving where they are,” he says. “But the international community also needs to help poorer countries prepare for these migrations. If and when large numbers of people do find that their lands are no longer habitable, there should be systems in place to help them relocate in ways that work for them, so that they’re not spontaneously fleeing droughts or floods as refugees but are choosing to safely move somewhere they want to go, to a place that’s ready to receive them.”
Temperatures have become especially dangerous in inner cities as a result of the “urban heat island” effect. (Nina Westervelt / Bloomberg via Getty Images)
5. Rising temperatures are already making people sick
One of the deadliest results of climate change, and also one of the most insidious and overlooked, experts say, is the public-health threat posed by rising temperatures and extreme heat.
“Hot weather can trigger changes in the body that have both acute and chronic health consequences,” says Cecilia Sorensen, a Columbia emergency-room physician and public-health researcher. “It actually alters your blood chemistry in ways that make it prone to clotting, which can lead to heart attacks or strokes, and it promotes inflammation, which can contribute to a host of other problems.”
Exposure to severe heat, Sorensen says, has been shown to exacerbate cardiovascular disease, asthma, chronic obstructive pulmonary disease, arthritis, migraines, depression, and anxiety, among other conditions. “So if you live in a hot climate and lack access to air conditioning, or work outdoors, you’re more likely to get sick.”
By destabilizing the natural environment and our relationship to it, climate change is endangering human health in numerous ways. Researchers at Columbia’s Mailman School of Public Health, which launched its innovative Climate and Health Program in 2010, have shown that rising temperatures are making air pollution worse, in part because smog forms faster in warmer weather and because wildfires are spewing enormous amounts of particulate matter into the atmosphere. Global warming is also contributing to food and drinking-water shortages, especially in developing countries. And it is expected to fuel transmission of dengue fever, Lyme disease, West Nile virus, and other diseases by expanding the ranges of mosquitoes and ticks. But experts say that exposure to extreme heat is one of the least understood and fastest growing threats.
“Health-care professionals often fail to notice when heat stress is behind a patient’s chief complaint,” says Sorensen, who directs the Mailman School’s Global Consortium on Climate and Health Education, an initiative launched in 2017 to encourage other schools of public health and medicine to train practitioners to recognize when environmental factors are driving patients’ health problems. “If I’m seeing someone in the ER with neurological symptoms in the middle of a heat wave, for example, I need to quickly figure out whether they’re having a cerebral stroke or a heat stroke, which itself can be fatal if you don’t cool the body down quickly. And then I need to check to see if they’re taking any medications that can cause dehydration or interfere with the body’s ability to cool itself. But these steps aren’t always taken.”
Sorensen says there is evidence to suggest that climate change, in addition to aggravating existing medical conditions, is causing new types of heat-related illnesses to emerge. She points out that tens of thousands of agricultural workers in Central America have died of an enigmatic new kidney ailment that has been dubbed Mesoamerican nephropathy or chronic kidney disease of unknown origin (CKDu), which appears to be the result of persistent heat-induced inflammation. Since CKDu was first observed among sugarcane workers in El Salvador in the 1990s, Sorensen says, it has become endemic in those parts of Central America where heat waves have grown the most ferocious.
“It’s also been spotted among rice farmers in Sri Lanka and laborers in India and Egypt,” says Sorensen, who is collaborating with physicians in Guatemala to develop an occupational-health surveillance system to spot workers who are at risk of developing CKDu. “In total, we think that at least fifty thousand people have died of this condition worldwide.”
Heat waves are now also killing hundreds of Americans each year. Particularly at risk, experts say, are people who live in dense urban neighborhoods that lack trees, open space, reflective rooftops, and other infrastructure that can help dissipate the heat absorbed by asphalt, concrete, and brick. Research has shown that temperatures in such areas can get up to 15°F hotter than in surrounding neighborhoods on summer days. The fact that these so-called “urban heat islands” are inhabited largely by Black and Latino people is now seen as a glaring racial inequity that should be redressed by investing in public-infrastructure projects that would make the neighborhoods cooler and safer.
“It isn’t a coincidence that racially segregated neighborhoods in US cities are much hotter, on average, than adjacent neighborhoods,” says Joan Casey, a Columbia epidemiologist who studies how our natural and built environments influence human health. In fact, in one recent study, Casey and several colleagues showed that urban neighborhoods that lack green space are by and large the same as those that in the 1930s and 1940s were subject to the racist practice known as redlining, in which banks and municipalities designated minority neighborhoods as off-limits for private lending and public investment. “There’s a clear link between that history of institutionalized racism and the subpar public infrastructure we see in these neighborhoods today,” she says.
Extreme heat is hardly the only environmental health hazard faced by residents of historically segregated neighborhoods. Research by Columbia scientists and others has shown that people in these areas are often exposed to dirty air, partly as a result of the large numbers of trucks and buses routed through their streets, and to toxins emanating from industrial sites. But skyrocketing temperatures are exacerbating all of these other health risks, according to Sorensen.
“A big push now among climate scientists and public-health researchers is to gather more street-by-street climate data in major cities so that we know exactly where people are at the greatest risk of heat stress and can more effectively advocate for major infrastructure upgrades in those places,” she says. “In the meantime, there are relatively small things that cities can do now to save lives in the summer — like providing people free air conditioners, opening community cooling centers, and installing more water fountains.”
Workers install solar panels on the roof of a fish-processing plant in Zhoushan, China. (Yao Feng / VCG via Getty Images)
6. We’re curbing emissions but need to act faster
Since the beginning ofthe industrial revolution, humans have caused the planet to warm 1.1°C (or about 2°F), mainly by burning coal, oil, and gas for energy. Current policies put the world on pace to increase global temperatures by about 2.6°C over pre-industrial levels by the end of the century. But to avoid the most catastrophic consequences of climate change, we must try to limit the warming to 1.5°C, scientists say. This will require that we retool our energy systems, dramatically expanding the use of renewable resources and eliminating nearly all greenhouse-gas emissions by mid-century.
“We’ll have to build the equivalent of the world’s largest solar park every day for the next thirty years to get to net zero by 2050,” says Jason Bordoff, co-dean of the Columbia Climate School. A leading energy-policy expert, Bordoff served on the National Security Council of President Barack Obama ’83CC. “We’ll also have to ramp up global investments in clean energy R&D from about $2 trillion to $5 trillion per year,” he adds, citing research from the International Energy Agency. “The challenge is enormous.”
Over the past few years, momentum for a clean-energy transition has been accelerating. In the early 2000s, global emissions were increasing 3 percent each year. Now they are rising just 1 percent annually, on average, with some projections indicating that they will peak in the mid-2020s and then start to decline. This is the result of a variety of policies that countries have taken to wean themselves off fossil fuels. European nations, for example, have set strict limits on industrial emissions. South Africa, Chile, New Zealand, and Canada have taken significant steps to phase out coal-fired power plants. And the US and China have enacted fuel-efficiency standards and invested in the development of renewable solar, wind, and geothermal energy — which, along with hydropower, account for nearly 30 percent of all electricity production in the world.
“It’s remarkable how efficient renewables have become over the past decade,” says Bordoff, noting that the costs of solar and wind power have dropped by roughly 90 percent and 70 percent, respectively, in that time. “They’re now competing quite favorably against fossil fuels in many places, even without government subsidies.”
But in the race to create a carbon-neutral global economy, Bordoff says, the biggest hurdles are ahead of us. He points out that we currently have no affordable ways to decarbonize industries like shipping, trucking, air travel, and cement and steel production, which require immense amounts of energy that renewables cannot yet provide. “About half of all the emission reductions that we’ll need to achieve between now and 2050 must come from technologies that aren’t yet available at commercial scale,” says Bordoff.
In order to fulfill the potential of solar and wind energy, we must also improve the capacity of electrical grids to store power. “We need new types of batteries capable of storing energy for longer durations, so that it’s available even on days when it isn’t sunny or windy,” he says.
Perhaps the biggest challenge, Bordoff says, will be scaling up renewable technologies quickly enough to meet the growing demand for electricity in developing nations, which may otherwise choose to build more coal- and gas-fueled power plants. “There are large numbers of people around the world today who have almost no access to electricity, and who in the coming years are going to want to enjoy some of the basic conveniences that we often take for granted, like refrigeration, Internet access, and air conditioning,” he says. “Finding sustainable ways to meet their energy needs is a matter of equity and justice.”
Bordoff, who is co-leading the new Climate School alongside geochemist Alex Halliday, environmental geographer Ruth DeFries, and marine geologist Maureen Raymo ’89GSAS, is also the founding director of SIPA’s Center on Global Energy Policy, which supports research aimed at identifying evidence-based, actionable solutions to the world’s energy needs. With more than fifty affiliate scholars, the center has, since its creation in 2013, established itself as an intellectual powerhouse in the field of energy policy, publishing a steady stream of definitive reports on topics such as the future of coal; the potential for newer, safer forms of nuclear energy to help combat climate change; and the geopolitical ramifications of the shift away from fossil fuels. One of the center’s more influential publications, Energizing America, from 2020, provides a detailed roadmap for how the US can assert itself as an international leader in clean-energy systems by injecting more federal money into the development of technologies that could help decarbonize industries like construction, transportation, agriculture, and manufacturing. President Joe Biden’s $1 trillion Infrastructure Investment and Jobs Act, signed into law in November, incorporates many of the report’s recommendations, earmarking tens of billions of dollars for scientific research in these areas.
“When we sat down to work on that project, my colleagues and I asked ourselves: If an incoming administration wanted to go really big on climate, what would it do? How much money would you need, and where exactly would you put it?” Bordoff says. “I think that’s one of our successes.”
Which isn’t to say that Bordoff considers the climate initiatives currently being pursued by the Biden administration to be sufficient to combat global warming. The vast majority of the climate-mitigation measures contained in the administration’s first two major legislative packages — the infrastructure plan and the more ambitious Build Back Better social-spending bill, which was still being debated in Congress when this magazine went to press — are designed to reward businesses and consumers for making more sustainable choices, like switching to renewable energy sources and purchasing electric vehicles. A truly transformative climate initiative, Bordoff says, would also discourage excessive use of fossil fuels. “Ideally, you’d want to put a price on emissions, such as with a carbon tax or a gasoline tax, so that the biggest emitters are forced to internalize the social costs they’re imposing on everyone else,” he says.
Bordoff is a pragmatist, though, and ever mindful of the fact that public policy is only as durable as it is popular. “I think the American people are more divided on this than we sometimes appreciate,” he says. “Support for climate action is growing in the US, but we have to be cognizant of how policy affects everyday people. There would be concern, maybe even outrage, if electric or gas bills suddenly increased. And that would make it much, much harder to gain and keep support during this transition.”
Today, researchers from across the entire University are working together to pursue a multitude of strategies that may help alleviate the climate crisis. Some are developing nanomaterials for use in ultra-efficient solar cells. Others are inventing methods to suck CO2 out of the air and pump it underground, where it will eventually turn into chalk. Bordoff gets particularly excited when describing the work of engineers at the Columbia Electrochemical Energy Center who are designing powerful new batteries to store solar and wind power. “This is a team of more than a dozen people who are the top battery experts in the world,” he says. “Not only are they developing technologies to create long-duration batteries, but they’re looking for ways to produce them without having to rely on critical minerals like cobalt and lithium, which are in short supply.”
In his own work, Bordoff has recently been exploring the geopolitical ramifications of the energy transition, with an eye toward helping policymakers navigate the shifting international power dynamics that are likely to occur as attention tilts away from fossil fuels in favor of other natural resources.
But he believes the best ideas will come from the next generation of young people, who, like the students in the Climate School’s inaugural class this year, are demanding a better future. “When I see the growing sense of urgency around the world, especially among the younger demographics, it gives me hope,” he says. “The pressure for change is building. Our climate policies don’t go far enough yet, so something is eventually going to have to give — and I don’t think it’s going to be the will and determination of the young people. Sooner or later, they’re going to help push through the more stringent policies that we need. The question is whether it will be in time.”
Tradição acontece desde 1887 em pequena cidade da Pensilvânia
A marmota Phil prevê que frio vai continuar nos Estados Unidos – Alan Freed/Reuters
Na manhã desta quarta (2), a marmota Phil viu a sua própria sombra e voltou para a sua toca. Segundo a tradição americana do Dia da Marmota, o movimento do animal significa que o frio continuará por mais seis semanas nos Estados Unidos.
Se Phil não tivesse visto a própria sombra, significaria que o calor da primavera estaria a caminho.
A previsão feita pela marmota é uma tradição que acontece desde 1887, sempre no dia 2 de fevereiro, na pequena cidade de Punxsutawney, na Pensilvânia. Após uma edição virtual em 2021 por causa da pandemia, neste ano o evento reuniu milhares de pessoas.
O roedor —que é substituído e rebatizado a cada vez que um animal titular morre— acertou 50% das vezes nos últimos dez anos —ou seja, índice de acerto igual ao de uma previsão aleatória, segundo o Noaa (Centros Nacionais de Informação Ambiental, na sigla em inglês),
O evento do Dia da Marmota foi retratado na comédia “Feitiço do Tempo“, de 1993, no qual um repórter de TV, vivido por Bill Murray, fica “preso” neste dia e é obrigado a reviver a mesma data inúmeras vezes, em sequência. Com isso, Dia da Marmota passou a ser uma forma de se referir à sensação de que os dias se repetem, situação comum na pandemia.
A marmota Punxsutawney Phil é mostrada ao público após sair da sua toca. Alan Freed/Reuters
IS IT NEARLY over? In 2021 people have been yearning for something like stability. Even those who accepted that they would never get their old lives back hoped for a new normal. Yet as 2022 draws near, it is time to face the world’s predictable unpredictability. The pattern for the rest of the 2020s is not the familiar routine of the pre-covid years, but the turmoil and bewilderment of the pandemic era. The new normal is already here.
Remember how the terrorist attacks of September 11th 2001 began to transform air travel in waves. In the years that followed each fresh plot exposed an unforeseen weakness that required a new rule. First came locked cockpit doors, more armed air marshals and bans on sharp objects. Later, suspicion fell on bottles of liquid, shoes and laptops. Flying did not return to normal, nor did it establish a new routine. Instead, everything was permanently up for revision.
The world is similarly unpredictable today and the pandemic is part of the reason. For almost two years people have lived with shifting regimes of mask-wearing, tests, lockdowns, travel bans, vaccination certificates and other paperwork. As outbreaks of new cases and variants ebb and flow, so these regimes can also be expected to come and go. That is the price of living with a disease that has not yet settled into its endemic state.
And covid-19 may not be the only such infection. Although a century elapsed between the ravages of Spanish flu and the coronavirus, the next planet-conquering pathogen could strike much sooner. Germs thrive in an age of global travel and crowded cities. The proximity of people and animals will lead to the incubation of new human diseases. Such zoonoses, which tend to emerge every few years, used to be a minority interest. For the next decade, at least, you can expect each new outbreak to trigger paroxysms of precaution.
Covid has also helped bring about today’s unpredictable world indirectly, by accelerating change that was incipient. The pandemic has shown how industries can be suddenly upended by technological shifts. Remote shopping, working from home and the Zoom boom were once the future. In the time of covid they rapidly became as much of a chore as picking up the groceries or the daily commute.
Big technological shifts are nothing new. But instead of taking centuries or decades to spread around the world, as did the printing press and telegraph, new technologies become routine in a matter of years. Just 15 years ago, modern smartphones did not exist. Today more than half of the people on the planet carry one. Any boss who thinks their industry is immune to such wild dynamism is unlikely to last long.
The pandemic may also have ended the era of low global inflation that began in the 1990s and was ingrained by economic weakness after the financial crisis of 2007-09. Having failed to achieve a quick recovery then, governments spent nearly $11trn trying to ensure that the harm caused by the virus was transient.
They broadly succeeded, but fiscal stimulus and bunged-up supply chains have raised global inflation above 5%. The apparent potency of deficit spending will change how recessions are fought. As they raise interest rates to deal with inflation, central banks may find themselves in conflict with indebted governments. Amid a burst of innovation around cryptocoins, central-bank digital currencies and fintech, many outcomes are possible. A return to the comfortable macroeconomic orthodoxies of the 1990s is one of the least likely.
The pandemic has also soured relations between the world’s two great powers. America blames China’s secretive Communist Party for failing to contain the virus that emerged from Wuhan at the end of 2019. Some claim that it came from a Chinese laboratory there—an idea China has allowed to fester through its self-defeating resistance to open investigations. For its part, China, which has recorded fewer than 6,000 deaths, no longer bothers to hide its disdain for America, with its huge death toll. In mid-December this officially passed 800,000 (The Economist estimates the full total to be almost 1m). The contempt China and America feel for each other will heighten tensions over Taiwan, the South China Sea, human rights in Xinjiang and the control of strategic technologies.
In the case of climate change, the pandemic has served as an emblem of interdependence. Despite the best efforts to contain them, virus particles cross frontiers almost as easily as molecules of methane and carbon dioxide. Scientists from around the world showed how vaccines and medicines can save hundreds of millions of lives. However, hesitancy and the failure to share doses frustrated their plans. Likewise, in a world that is grappling with global warming, countries that have everything to gain from working together continually fall short. Even under the most optimistic scenarios, the accumulation of long-lasting greenhouse gases in the atmosphere means that extreme and unprecedented weather of the kind seen during 2021 is here to stay.
The desire to return to a more stable, predictable world may help explain a 1990s revival. You can understand the appeal of going back to a decade in which superpower competition had abruptly ended, liberal democracy was triumphant, suits were oversized, work ended when people left the office, and the internet was not yet disrupting cosy, established industries or stoking the outrage machine that has supplanted public discourse.
Events, dear boy, events
That desire is too nostalgic. It is worth notching up some of the benefits that come with today’s predictable unpredictability. Many people like to work from home. Remote services can be cheaper and more accessible. The rapid dissemination of technology could bring unimagined advances in medicine and the mitigation of global warming.
Even so, beneath it lies the unsettling idea that once a system has crossed some threshold, every nudge tends to shift it further from the old equilibrium. Many of the institutions and attitudes that brought stability in the old world look ill-suited to the new. The pandemic is like a doorway. Once you pass through, there is no going back. ■
This article appeared in the Leaders section of the print edition under the headline “The new normal”
As alarm about climate change and calls for action intensify, solar geoengineering (SG) is seeing increased attention and controversy. Views on whether it should or will ever be used diverge, but the evidentiary basis for these views is thin. On such a high-stakes, knowledge-limited issue, one might expect strong support for research, but even research has met opposition. Opponents’ objections are grounded in valid concerns but impossible to fully address, as they are framed in ways that make rejecting research an axiom, not a conclusion based on evidence.
Supporters of SG research argue that it can inform future decisions and prepare for likely future calls for deployment. A US National Academies of Sciences, Engineering, and Medicine (NASEM) report earlier this year lent thoughtful support to this view. Opponents raise well-known concerns about SG such as its imperfect climate correction, its time-scale mismatch with greenhouse gases (GHGs), and the potential to over-rely on it or use it recklessly or unjustly. They oppose research based on the same concerns, arguing that usage can never be acceptable so research is superfluous; or that sociopolitical lock-in will drive research toward deployment even if unwarranted. Both support and opposition are often implicit, embedded in debates over additional governance of SG research beyond peer review, program management, and regulatory compliance.
At present, potential SG methods and claimed benefits and harms are hypothetical, not demonstrated. The strongest objections to research invoke potential consequences that are indirect, mediated by imprudent or unjust policy decisions. Because the paths from research to these bad outcomes involve political behavior, claims that these “could” happen cannot be fully refuted. Understanding and limiting these risks require the same research and governance-building activities that opponents reject as causing the risks.
To reject an activity based on harms that might follow is to apply extreme precaution. This can be warranted when there is risk of serious, unmitigable harm and the alternative is known to be acceptable. That is not the case here. Rejecting SG research means taking the alternative trajectory of uncertain but potentially severe climate impacts, reduced by whatever emissions cuts, GHG removals, and adaptation are achieved. But these other responses needed to meet prudent climate targets carry their own risks: of falling short and suffering more severe climate change, and of collateral environmental and socioeconomic harms from deployment at the required transformative, even revolutionary, scale.
Suppressing research on SG might reduce risks from its future use, but this is not assured: Rather than preventing use in some future crisis, blocking research might make such use less informed, cruder, and more dangerous. Even if these risks are reduced, this would shift increased risks onto climate change and crash pursuit of other responses. Total climate-related risk may well increase—and be more unjustly distributed, because the largest benefits of SG appear likely to flow to the most vulnerable people and communities.
Yet the concerns that motivate opposition to research are compelling. SG use would be an unprecedented step, affecting climate response, international governance, sustainability, and global justice. Major concerns—about reckless or rivalrous use, or over-reliance weakening emissions cuts—are essential to address, even if they cannot be avoided with certainty. A few directions show promise for doing so. Research should be in public programs, in jurisdictions with cultures of public benefit and research accountability. The NASEM call for a US federal program is sound. Other national programs should be established. Research governance should be somewhat stronger than for less controversial research, including scale limits on field experiments and periodic program reassessments. Exploration of governance needs for larger-scale interventions should begin well before these are considered. Research and governance should seek broad international cooperation—promptly, but not as a precondition to national programs. Broad citizen consultations are needed on overall climate response and the role of SG. These should link to national research and governance programs but not have veto power over specific activities.
Precaution is appropriate, even necessary. But precaution cannot selectively target risks from one climate response while ignoring its linkages to other responses and risks. Suppressing SG research is likely to make the harms and injustices that opponents fear more likely, not less.
A relação entre o conhecimento genuíno e as doutrinas marginais é mais próxima do muitos querem aceitar, diz historiador especialista em história da ciência
Para as instituições científicas, essas práticas e movimentos enquadram-se na categoria das “pseudociências”. Ou seja, doutrinas baseadas em fundamentos que seus adeptos consideram científicas e, a partir daí, criam uma corrente que se afasta do que é normalmente aceito pelo mundo acadêmico.
Mas como distinguir o que é ciência daquilo que se faz passar por ciência?
Essa tarefa é muito mais complicada do que parece, segundo Michael Gordin, professor da Universidade Princeton, nos Estados Unidos, e especialista em história da ciência. Gordin é autor do livro On the Fringe: Where Science Meets Pseudoscience (“Na Fronteira: Onde a Ciência Encontra a Pseudociência”, em tradução livre).
Seu livro detalha como operam as pseudociências e como, do seu ponto de vista, são uma consequência inevitável do progresso científico.
Em entrevista à BBC News Mundo (o serviço em espanhol da BBC), Gordin detalha a complexa relação entre o que se considera ciência verdadeira e o que ele chama de doutrinas marginais.
Michael Gordin, autor do livro “Na Fronteira: Onde a Ciência Encontra a Pseudociência” (em tradução livre do inglês)
BBC News Mundo – O senhor afirma que não existe uma linha definida separando a ciência da pseudociência, mas a ciência tem um método claro e comprovável. Esta não seria uma diferença clara com relação à pseudociência?
Michael Gordin – Acredita-se normalmente que a ciência tem um único método, mas isso não é verdade. A ciência tem muitos métodos. Os geólogos fazem seu trabalho de forma muito diferente dos físicos teóricos, e os biólogos moleculares, dos neurocientistas. Alguns cientistas trabalham no campo, observando o que acontece. Outros trabalham em laboratório, sob condições controladas. Outros fazem simulações. Ou seja, a ciência tem muitos métodos, que são heterogêneos. A ciência é dinâmica, e esse dinamismo dificulta a definição dessa linha. Podemos tomar um exemplo concreto e dizer que se trata de ciência ou de pseudociência. É fácil com um exemplo concreto.
O problema é que essa linha não é consistente e, quando você observa uma maior quantidade de casos, haverá coisas que antes eram consideradas ciência e agora são consideradas pseudociências, como a astrologia. Existem temas como a deriva dos continentes, que inicialmente era considerada uma teoria marginal e agora é uma teoria básica da geofísica.
Quase tudo o que hoje se considera pseudociência já foi ciência no passado, que foi refutada com o passar do tempo e os que continuam a apoiá-la são considerados lunáticos ou charlatães. Ou seja, a definição do que é ciência ou pseudociência é dinâmica ao longo do tempo. Esta é uma das razões da dificuldade desse julgamento.
Considerada ciência no passado, a astrologia encontra-se hoje no rol das pseudociências – ou doutrinas marginais, segundo Michael Gordin
BBC News Mundo – Mas existem coisas que não se alteram ao longo do tempo. Por exemplo, 2+2 sempre foi igual a 4. Isso quer dizer que a ciência trabalha com base em princípios que não permitem interpretações…
Gordin – Bem, isso não é necessariamente certo. Dois óvnis mais dois óvnis são quatro óvnis.
É interessante que você tenha escolhido a matemática que, de fato, não é uma ciência empírica, pois ela não se refere ao mundo exterior. É uma série de regras que usamos para determinar certas coisas.
Uma das razões pelas quais é muito complicado fazer a distinção é o fato de que as doutrinas marginais observam o que é considerado ciência estabelecida e adaptam a elas seus argumentos e suas técnicas.
Um exemplo é o “criacionismo científico”, que defende que o mundo foi criado em sete dias, 6.000 anos atrás. Existem publicações de criacionismo científico que incluem gráficos matemáticos sobre as razões de decomposição de vários isótopos, para tentar comprovar que a Terra tem apenas 6.000 anos.
Seria genial afirmar que usar a matemática e apresentar gráficos é ciência, mas a realidade é que quase todas as doutrinas marginais usam a matemática de alguma forma.
Os cientistas discordam sobre o tipo de matemática utilizada, mas existem, por exemplo, pessoas que defendem que a matemática avançada utilizada na teoria das cordas já não é científica, porque perdeu a verificação empírica. Trata-se de matemática de alto nível, feita por doutores das melhores universidades, mas existe um debate interno na ciência, entre os físicos, que discutem se ela deve ou não ser considerada ciência.
Não estou dizendo que todos devem ser criacionistas, mas, quando a mecânica quântica foi proposta pela primeira vez, algumas pessoas diziam: “isso parece muito estranho”, “ela não se atém às medições da forma em que acreditamos que funcionem” ou “isso realmente é ciência?”
Nos últimos anos, popularizou-se entre alguns grupos a ideia de que a Terra é plana
BBC News Mundo – Então o sr. afirma que as pseudociências ou doutrinas marginais têm algum valor?
Gordin – A questão é que muitas coisas que consideramos inovadoras provêm dos limites do conhecimento ortodoxo.
O que quero dizer são basicamente três pontos: primeiro, que não existe uma linha divisória clara; segundo, que compreender o que fica de cada lado da linha exige a compreensão do contexto; e, terceiro, que o processo normal da ciência produz doutrinas marginais.
Não podemos descartar essas doutrinas, pois elas são inevitáveis. Elas são um produto derivado da forma como as ciências funcionam.
BBC News Mundo – Isso significa que deveríamos ser mais tolerantes com as pseudociências?
Gordin – Os cientistas, como qualquer outra pessoa, têm tempo e energia limitados e não podem pesquisar tudo.
Por isso, qualquer tempo que for dedicado a refutar ou negar a legitimidade de uma doutrina marginal é tempo que deixa de ser usado para fazer ciência — e talvez nem surta resultados.
As pessoas vêm refutando o criacionismo científico há décadas. Elas trataram de desmascarar a telepatia por ainda mais tempo e ela segue rondando à nossa volta. Existem diversos tipos de ideias marginais. Algumas são muito politizadas e chegam a ser nocivas para a saúde pública ou o meio ambiente. É a estas, a meu ver, que precisamos dedicar atenção e recursos para sua eliminação ou pelo menos explicar por que elas estão erradas.
Mas não acho que outras ideias, como acreditar em óvnis, sejam especificamente perigosas. Acredito que nem mesmo o criacionismo seja tão perigoso como ser antivacinas, ou acreditar que as mudanças climáticas são uma farsa.
Devemos observar as pseudociências como algo inevitável e abordá-las de forma pragmática. Temos uma quantidade de recursos limitada e precisamos escolher quais doutrinas podem causar danos e como enfrentá-las.
Devemos simplesmente tratar de reduzir os danos que elas podem causar? Esse é o caso da vacinação obrigatória, cujo objetivo é evitar os danos, mas sem necessariamente convencer os opositores que eles estão equivocados. Devemos persuadi-los de que estão equivocados? Isso precisa ser examinado caso a caso.
Existem em várias partes do mundo grupos que se opõem às vacinas contra a covid-19
BBC News Mundo – Como então devemos lidar com as pseudociências?
Gordin – Uma possibilidade é reconhecer que são pessoas interessadas na ciência.
Um terraplanista, por exemplo, é uma pessoa interessada na configuração da Terra. Significa que é alguém que teve interesse em pesquisar a natureza e, por alguma razão, seguiu a direção incorreta.
Pode-se então perguntar por que isso aconteceu. Pode-se abordar a pessoa, dizendo: “se você não acredita nesta evidência, em qual tipo de evidência você acreditaria?” ou “mostre-me suas evidências e vamos conversar”.
É algo que poderíamos fazer, mas vale a pena fazê-lo? É uma doutrina que não considero perigosa. Seria um problema se todos os governos do mundo pensassem que a Terra é plana, mas não vejo esse risco.
A versão contemporânea do terraplanismo surgiu há cerca de 15 anos. Acredito que os acadêmicos ainda não compreendem muito bem como aconteceu, nem por que aconteceu tão rápido.
Outra coisa que podemos fazer é não necessariamente persuadi-los de que estão equivocados, porque talvez eles não aceitem, mas tentar entender como esse movimento surgiu e se expandiu. Isso pode nos orientar sobre como enfrentar ameaças mais sérias.
As pessoas que acreditam nas doutrinas marginais muitas vezes tomam elementos da ciência estabelecida para traçar suas conclusões
BBC News Mundo – Ameaças mais sérias como os antivacinas…
Gordin – As vacinas foram inventadas no século 18, sempre houve pessoas que se opusessem a elas, em parte porque todas as vacinas apresentam risco, embora seja muito baixo.
Ao longo do tempo, a forma como se lidou com a questão foi a instituição de um sistema de seguro que basicamente diz o seguinte: você precisa receber a vacina, mas se você receber e tiver maus resultados, nós compensaremos você por esses danos.
Tenho certeza de que isso ocorrerá com a vacina contra a covid, mas ainda não conhecemos todo o espectro, nem a seriedade dos danos que ela poderá causar. Mas os danos e a probabilidade de sua ocorrência parecem ser muito baixos.
Com relação aos antivacinas que acreditam, por exemplo, que a vacina contra a covid contém um chip, a única ação que pode ser tomada para o bem da saúde pública é torná-la obrigatória. Foi dessa forma que se conseguiu erradicar a pólio na maior parte do mundo, mesmo com a existência dos opositores à vacina.
BBC News Mundo – Mas torná-la obrigatória pode fazer com que alguém diga que a ciência está sendo usada com propósitos políticos ou ideológicos…
Gordin – Tenho certeza de que, se o Estado impuser uma vacina obrigatória, alguém dirá isso. Mas não se trata de ideologia. O Estado já obriga tantas coisas e já existem vacinas que são obrigatórias.
E o Estado faz todo tipo de afirmações científicas. Não é permitido o ensino do criacionismo nas escolas, por exemplo, nem a pesquisa de clonagem de seres humanos. Ou seja, o Estado já interveio muitas vezes em disputas científicas e procura fazer isso segundo o consenso científico.
BBC News Mundo – As pessoas que adotam as pseudociências o fazem com base no ceticismo, que é exatamente um dos valores fundamentais da ciência. É um paradoxo, não?
Gordin – Este é um dos motivos por que acredito que não haja uma linha divisória clara entre a ciência e a pseudociência. O ceticismo é uma ferramenta que todos nós utilizamos. A questão é sobre qual tipo de assuntos você é cético e o que pode convencê-lo de um fato específico.
No século 19, havia um grande debate se os átomos realmente existiam ou não. Hoje, praticamente nenhum cientista duvida da sua existência. É assim que a ciência funciona. O foco do ceticismo se move de um lado para outro com o passar do tempo. Quando esse ceticismo se dirige a assuntos que já foram aceitos, às vezes ocorrem problemas, mas há ocasiões em que isso é necessário.
A essência da teoria da relatividade de Einstein é que o éter — a substância através da qual as ondas de luz supostamente viajavam — não existe. Para isso, Einstein concentrou seu ceticismo em um postulado fundamental, mas o fez dizendo que poderiam ser preservados muitos outros conhecimentos que já eram considerados estabelecidos.
Portanto, o ceticismo deve ter um propósito. Se você for cético pelo simples fato de sê-lo, este é um processo que não produz avanços.
O ceticismo é um dos princípios básicos da ciência
BBC News Mundo – É possível que, no futuro, o que hoje consideramos ciência seja descartado como pseudociência?
Gordin – No futuro, haverá muitas doutrinas que serão consideradas pseudociências, simplesmente porque existem muitas coisas que ainda não entendemos.
Existem muitas coisas que não entendemos sobre o cérebro ou o meio ambiente. No futuro, as pessoas olharão para muitas teorias e dirão que estão erradas.
Não é suficiente que uma teoria seja incorreta para que seja considerada pseudociência. É necessário que existam pessoas que acreditem que ela é correta, mesmo que o consenso afirme que se trata de um equívoco e que as instituições científicas considerem que, por alguma razão, ela é perigosa.
O que o surgimento da internet, os ataques de 11 de setembro de 2001 e a crise econômica de 2008 têm em comum?
Foram eventos extremamente raros e surpreendentes que tiveram um forte impacto na história.
Acontecimentos deste tipo costumam ser chamados de “cisnes negros”.
Alguns argumentam que a recente pandemia de covid-19 também pode ser considerada um deles, mas nem todo mundo concorda.
A “teoria do cisne negro” foi desenvolvida pelo professor, escritor e ex-operador da bolsa libanês-americano Nassim Taleb em 2007.
E possui três componentes, como o próprio Taleb explicou em um artigo no jornal americano The New York Times no mesmo ano:
– Em primeiro lugar, é algo atípico, já que está fora do âmbito das expectativas habituais, porque nada no passado pode apontar de forma convincente para sua possibilidade.
– Em segundo lugar, tem um impacto extremo.
– Em terceiro lugar, apesar de seu status atípico, a natureza humana nos faz inventar explicações para sua ocorrência após o fato em si, tornando-o explicável e previsível.
A tese de Taleb está geralmente associada à economia, mas se aplica a qualquer área.
E uma vez que as consequências costumam ser catastróficas, é importante aceitar que a ocorrência de um evento”cisne negro” é possível — e por isso é necessário ter um plano para lidar com o mesmo.
Em suma, o “cisne negro” representa uma metáfora para algo imprevisível e muito estranho, mas não impossível.
Por que são chamados assim?
No fim do século 17, navios europeus embarcaram na aventura de explorar a Austrália.
Em 1697, enquanto navegava nas águas de um rio desconhecido no sudoeste da Austrália Ocidental, o capitão holandês Willem de Vlamingh avistou vários cisnes negros, sendo possivelmente o primeiro europeu a observá-los.
Como consequência, Vlamingh deu ao rio o nome de Zwaanenrivier (Rio dos Cisnes, em holandês) por causa do grande número de cisnes negros que havia ali.
Tratava-se de um acontecimento inesperado e novo. Até aquele momento, a ciência só havia registrado cisnes brancos.
A primeira referência conhecida ao termo “cisne negro” associado ao significado de raridade vem de uma frase do poeta romano Décimo Júnio Juvenal (60-128).
Desesperado para encontrar uma esposa com todas as “qualidades certas” da época, ele escreveu em latim que esta mulher era rara avis in terris, nigroque simillima cygno (“uma ave rara nestas terras, como um cisne negro”), detalha o dicionário de Oxford.
Porque naquela época e até cerca de 1,6 mil anos depois, para os europeus, não existiam cisnes negros.
Prevendo os ‘cisnes negros’
Um grupo de cientistas da Universidade de Stanford, nos Estados Unidos, está trabalhando para prever o imprevisível.
Ou seja, para se antecipar aos “cisnes negros” — não às aves, mas aos estranhos eventos que acontecem na história.
Embora sua análise primária tenha sido baseada em três ambientes diferentes na natureza, o método computacional que eles criaram pode ser aplicado a qualquer área, incluindo economia e política.
“Ao analisar dados de longo prazo de três ecossistemas, pudemos demonstrar que as flutuações que ocorrem em diferentes espécies biológicas são estatisticamente iguais em diferentes ecossistemas”, afirmou Samuel Bray, assistente de pesquisa no laboratório de Bo Wang, professor de bioengenharia na Universidade de Stanford.
“Isso sugere que existem certos processos universais que podemos utilizar para prever esse tipo de comportamento extremo”, acrescentou Bray, conforme publicado no site da universidade.
Para desenvolver o método de previsão, os pesquisadores procuraram sistemas biológicos que vivenciaram eventos “cisne negro” e como foram os contextos em que ocorreram.
Eles se basearam então em ecossistemas monitorados de perto por muitos anos.
Os exemplos incluíram: um estudo de oito anos do plâncton do Mar Báltico com níveis de espécies medidos duas vezes por semana; medições de carbono de um bosque da Universidade de Harvard, nos EUA, que foram coletadas a cada 30 minutos desde 1991; e medições de cracas (mariscos), algas e mexilhões na costa da Nova Zelândia, feitas mensalmente por mais de 20 anos, detalha o estudo publicado na revista científica Plos Computational Biology.
Os pesquisadores aplicaram a estas bases de dados a teoria física por trás de avalanches e terremotos que, assim como os “cisnes negros”, mostram um comportamento extremo, repentino e de curto prazo.
A partir desta análise, os especialistas desenvolveram um método para prever eventos “cisne negro” que fosse flexível entre espécies e períodos de tempo e também capaz de trabalhar com dados muito menos detalhados e mais complexos.
Posteriormente, conseguiram prever com precisão eventos extremos que ocorreram nesses sistemas.
Até agora, “os métodos se baseavam no que vimos para prever o que pode acontecer no futuro, e é por isso que não costumam identificar os eventos ‘cisne negro'”, diz Wang.
Mas este novo mecanismo é diferente, segundo o professor de Stanford, “porque parte do pressuposto de que estamos vendo apenas parte do mundo”.
“Extrapola um pouco do que falta e ajuda enormemente em termos de previsão”, acrescenta.
Então, os “cisnes negros” poderiam ser detectados em outras áreas, como finanças ou economia?
“Aplicamos nosso método às flutuações do mercado de ações e funcionou muito bem”, disse Wang à BBC News Mundo, serviço de notícias em espanhol da BBC, por e-mail.
Os pesquisadores analisaram os índices Nasdaq, Dow Jones Industrial Average e S&P 500.
“Embora a principal tendência do mercado seja o crescimento exponencial de longo prazo, as flutuações em torno dessa tendência seguem as mesmas trajetórias e escalas médias que vimos nos sistemas ecológicos”, explica.
Mas “embora as semelhanças entre as variações na bolsa e ecológicas sejam interessantes, nosso método de previsão é mais útil nos casos em que os dados são escassos e as flutuações geralmente vão além dos registros históricos (o que não é o caso do mercado de ações)”, adverte Wang.
Por isso, temos que continuar atentos para saber se o próximo “cisne negro” vai nos pegar de surpresa… ou talvez não.
[Solar radiation management is listed first. Calling it “controversial” is bad journalism. It is extremely dangerous and there is not a lot of controversy about this aspect of the thing.]
Nov 8th 2021
The astonishingly rapid development and rollout of coronavirus vaccines has been a reminder of the power of science and technology to change the world. Although vaccines based on new mRNA technology seemed to have been created almost instantly, they actually drew upon decades of research going back to the 1970s. As the saying goes in the technology industry, it takes years to create an overnight success. So what else might be about to burst into prominence? Here are 22 emerging technologies worth watching in 2022
Solar geoengineering
It sounds childishly simple. If the world is getting too hot, why not offer it some shade? The dust and ash released into the upper atmosphere by volcanoes is known to have a cooling effect: Mount Pinatubo’s eruption in 1991 cooled the Earth by as much as 0.5°C for four years. Solar geoengineering, also known as solar radiation management, would do the same thing deliberately.
This is hugely controversial. Would it work? How would rainfall and weather patterns be affected? And wouldn’t it undermine efforts to curb greenhouse-gas emissions? Efforts to test the idea face fierce opposition from politicians and activists. In 2022, however, a group at Harvard University hopes to conduct a much-delayed experiment called SCoPEX. It involves launching a balloon into the stratosphere, with the aim of releasing 2kg of material (probably calcium carbonate), and then measuring how it dissipates, reacts and scatters solar energy.
Proponents argue that it is important to understand the technique, in case it is needed to buy the world more time to cut emissions. The Harvard group has established an independent advisory panel to consider the moral and political ramifications. Whether the test goes ahead or not, expect controversy.
Heat pumps
Keeping buildings warm in winter accounts for about a quarter of global energy consumption. Most heating relies on burning coal, gas or oil. If the world is to meet its climate-change targets, that will have to change. The most promising alternative is to use heat pumps—essentially, refrigerators that run in reverse.
Instead of pumping heat out of a space to cool it down, a heat pump forces heat in from the outside, warming it up. Because they merely move existing heat around, they can be highly efficient: for every kilowatt of electricity consumed, heat pumps can deliver 3kW of heat, making them cheaper to run than electric radiators. And running a heat pump backwards cools a home rather than heating it.
Gradient, based in San Francisco, is one of several companies offering a heat pump that can provide both heating and cooling. Its low-profile, saddle-bag shaped products can be mounted in windows, like existing air conditioners, and will go on sale in 2022.
Hydrogen-powered planes
Electrifying road transport is one thing. Aircraft are another matter. Batteries can only power small aircraft for short flights. But might electricity from hydrogen fuel cells, which excrete only water, do the trick? Passenger planes due to be test-flown with hydrogen fuel cells in 2022 include a two-seater being built at Delft University of Technology in the Netherlands. ZeroAvia, based in California, plans to complete trials of a 20-seat aircraft, and aims to have its hydrogen-propulsion system ready for certification by the end of the year. Universal Hydrogen, also of California, hopes its 40-seat plane will take off in September 2022.
Direct air capture
Carbon dioxide in the atmosphere causes global warming. So why not suck it out using machines? Several startups are pursuing direct air capture (DAC), a technology that does just that. In 2022 Carbon Engineering, a Canadian firm, will start building the world’s biggest DAC facility in Texas, capable of capturing 1m tonnes of CO2 per year. ClimeWorks, a Swiss firm, opened a DAC plant in Iceland in 2021, which buries captured CO2 in mineral form at a rate of 4,000 tonnes a year. Global Thermostat, an American firm, has two pilot plants. DAC could be vital in the fight against climate change. The race is on to get costs down and scale the technology up.
Vertical farming
A new type of agriculture is growing. Vertical farms grow plants on trays stacked in a closed, controlled environment. Efficient LED lighting has made the process cheaper, though energy costs remain a burden. Vertical farms can be located close to customers, reducing transport costs and emissions. Water use is minimised and bugs are kept out, so no pesticides are needed.
In Britain, the Jones Food Company will open the world’s largest vertical farm, covering 13,750 square metres, in 2022. AeroFarms, an American firm, will open its largest vertical farm, in Daneville, Virginia. Other firms will be expanding, too. Nordic Harvest will enlarge its facility just outside Copenhagen and construct a new one in Stockholm. Plenty, based in California, will open a new indoor farm near Los Angeles. Vertical farms mostly grow high-value leafy greens and herbs, but some are venturing into tomatoes, peppers and berries. The challenge now is to make the economics stack up, too.
Container ships with sails
Ships produce 3% of greenhouse-gas emissions. Burning maritime bunker fuel, a dirty diesel sludge, also contributes to acid rain. None of this was a problem in the age of sail—which is why sails are making a comeback, in high-tech form, to cut costs and emissions.
In 2022 Michelin of France will equip a freighter with an inflatable sail that is expected to reduce fuel consumption by 20%. MOL, a Japanese shipping firm, plans to put a telescoping rigid sail on a ship in August 2022. Naos Design of Italy expects to equip eight ships with its pivoting and foldable hard “wing sails”. Other approaches include kites, “suction wings” that house fans, and giant, spinning cylinders called Flettner rotors. By the end of 2022 the number of big cargo ships with sails of some kind will have quadrupled to 40, according to the International Windship Association. If the European Union brings shipping into its carbon-trading scheme in 2022, as planned, that will give these unusual technologies a further push.
VR workouts
Most people do not do enough exercise. Many would like to, but lack motivation. Virtual reality (VR) headsets let people play games and burn calories in the process, as they punch or slice oncoming shapes, or squat and shimmy to dodge obstacles. VR workouts became more popular during the pandemic as lockdowns closed gyms and a powerful, low-cost headset, the Oculus Quest 2, was released. An improved model and new fitness features are coming in 2022. And Supernatural, a highly regarded VR workout app available only in North America, may be released in Europe. Could the killer app for virtual reality be physical fitness?
Vaccines for HIV and malaria
The impressive success of coronavirus vaccines based on messenger RNA (mRNA) heralds a golden era of vaccine development. Moderna is developing an HIV vaccine based on the same mRNA technology used in its highly effective coronavirus vaccine. It entered early-stage clinical trials in 2021 and preliminary results are expected in 2022. BioNTech, joint-developer of the Pfizer-BioNTech coronavirus vaccine, is working on an mRNA vaccine for malaria, with clinical trials expected to start in 2022. Non-mRNA vaccines for HIV and malaria, developed at the University of Oxford, are also showing promise.
3D-printed bone implants
For years, researchers have been developing techniques to create artificial organs using 3D printing of biological materials. The ultimate goal is to take a few cells from a patient and create fully functional organs for transplantation, thus doing away with long waiting-lists, testing for matches and the risk of rejection.
That goal is still some way off for fleshy organs. But bones are less tricky. Two startups, Particle3D and ADAM, hope to have 3D-printed bones available for human implantation in 2022. Both firms use calcium-based minerals to print their bones, which are made to measure based on patients’ CT scans. Particle3D’s trials in pigs and mice found that bone marrow and blood vessels grew into its implants within eight weeks. ADAM says its 3D-printed implants stimulate natural bone growth and gradually biodegrade, eventually being replaced by the patient’s bone tissue. If all goes well, researchers say 3D-printed blood vessels and heart valves are next.
Flying electric taxis
Long seen as something of a fantasy, flying taxis, or electric vertical take-off and landing (eVTOL) aircraft, as the fledgling industry calls them, are getting serious. Several firms around the world will step up test flights in 2022 with the aim of getting their aircraft certified for commercial use in the following year or two. Joby Aviation, based in California, plans to build more than a dozen of its five-seater vehicles, which have a 150-mile range. Volocopter of Germany aims to provide an air-taxi service at the 2024 Paris Olympics. Other contenders include eHang, Lilium and Vertical Aerospace. Keep an eye on the skies.
Space tourism
After a stand-out year for space tourism in 2021, as a succession of billionaire-backed efforts shot civilians into the skies, hopes are high for 2022. Sir Richard Branson’s Virgin Galactic just beat Jeff Bezos’s Blue Origin to the edge of space in July, with both billionaires riding in their own spacecraft on suborbital trips. In September Elon Musk’s company, SpaceX, sent four passengers on a multi-day orbital cruise around the Earth.
All three firms hope to fly more tourists in 2022, which promises to be the first year in which more people go to space as paying passengers than as government employees. But Virgin Galactic is modifying its vehicle to make it stronger and safer, and it is not expected to fly again until the second half of 2022, with commercial service starting in the fourth quarter. Blue Origin plans more flights but has not said when or how many. For its part, SpaceX has done a deal to send tourists to the International Space Station. Next up? The Moon.
Delivery drones
They are taking longer than expected to get off the ground. But new rules, which came into effect in 2021, will help drone deliveries gain altitude in 2022. Manna, an Irish startup which has been delivering books, meals and medicine in County Galway, plans to expand its service in Ireland and into Britain. Wing, a sister company of Google, has been doing test deliveries in America, Australia and Finland and will expand its mall-to-home delivery service, launched in late 2021. Dronamics, a Bulgarian startup, will start using winged drones to shuttle cargo between 39 European airports. The question is: will the pace of drone deliveries pick up—or drop off?
Quieter supersonic aircraft
For half a century, scientists have wondered whether changes to the shape of a supersonic aircraft could reduce the intensity of its sonic boom. Only recently have computers become powerful enough to run the simulations needed to turn those noise-reduction theories into practice.
In 2022 NASA’s X-59 QueSST (short for “Quiet Supersonic Technology”) will make its first test flight. Crucially, that test will take place over land—specifically, Edwards Air Force Base in California. Concorde, the world’s first and only commercial supersonic airliner, was not allowed to travel faster than sound when flying over land. The X-59’s sonic boom is expected to be just one-eighth as loud as Concorde’s. At 75 perceived decibels, it will be equivalent to a distant thunderstorm—more of a sonic “thump”. If it works, NASA hopes that regulators could lift the ban on supersonic flights over land, ushering in a new era for commercial flight.
3D-printed houses
Architects often use 3D printing to create scale models of buildings. But the technology can be scaled up and used to build the real thing. Materials are squirted out of a nozzle as a foam that then hardens. Layer by layer, a house is printed—either on site, or as several pieces in a factory that are transported and assembled.
In 2022 Mighty Buildings, based in California, will complete a development of 15 eco-friendly 3D-printed homes at Rancho Mirage. And ICON, based in Texas, plans to start building a community of 100 3D-printed homes near Austin, which would be the largest development of its kind.
Sleep tech
It’s become a craze in Silicon Valley. Not content with maximising their productivity and performance during their waking hours, geeks are now optimising their sleep, too, using an array of technologies. These include rings and headbands that record and track sleep quality, soothing sound machines, devices to heat and cool mattresses, and smart alarm clocks to wake you at the perfect moment. Google launched a sleep-tracking nightstand tablet in 2021, and Amazon is expected to follow suit in 2022. It sounds crazy. But poor sleep is linked with maladies from heart disease to obesity. And what Silicon Valley does today, everyone else often ends up doing tomorrow.
Personalised nutrition
Diets don’t work. Evidence is growing that each person’s metabolism is unique, and food choices should be, too. Enter personalised nutrition: apps that tell you what to eat and when, using machine-learning algorithms, tests of your blood and gut microbiome, data on lifestyle factors such as exercise, and real-time tracking of blood-sugar levels using coin-sized devices attached to the skin. After successful launches in America, personalised-nutrition firms are eyeing other markets in 2022. Some will also seek regulatory approval as treatments for conditions such as diabetes and migraine.
Wearable health trackers
Remote medical consultations have become commonplace. That could transform the prospects for wearable health trackers such as the Fitbit or Apple Watch. They are currently used primarily as fitness trackers, measuring steps taken, running and swimming speeds, heart rates during workouts, and so forth. But the line between consumer and medical uses of such devices is now blurring, say analysts at Gartner, a consultancy.
Smart watches can already measure blood oxygenation, perform ECGs and detect atrial fibrillation. The next version of the Apple Watch, expected in 2022, may include new sensors capable of measuring levels of glucose and alcohol in the blood, along with blood pressure and body temperature. Rockley Photonics, the company supplying the sensor technology, calls its system a “clinic on the wrist”. Regulatory approval for such functions may take a while, but in the meantime doctors, not just users, will be paying more attention to data from wearables.
The metaverse
Coined in 1992 by Neal Stephenson in his novel “Snow Crash”, the word “metaverse” referred to a persistent virtual world, accessible via special goggles, where people could meet, flirt, play games, buy and sell things, and much more besides. In 2022 it refers to the fusion of video games, social networking and entertainment to create new, immersive experiences, like swimming inside your favourite song at an online concert. Games such as Minecraft, Roblox and Fortnite are all stepping-stones to an emerging new medium. Facebook has renamed itself Meta to capitalise on the opportunity—and distract from its other woes.
Quantum computing
An idea that existed only on blackboards in the 1990s has grown into a multi-billion dollar contest between governments, tech giants and startups: harnessing the counter-intuitive properties of quantum physics to build a new kind of computer. For some kinds of mathematics a quantum computer could outperform any non-quantum machine that could ever be built, making quick work of calculations used in cryptography, chemistry and finance.
But when will such machines arrive? One measure of a quantum computer’s capability is its number of qubits. A Chinese team has built a computer with 66 qubits. IBM, an American firm, hopes to hit 433 qubits in 2022 and 1,000 by 2023. But existing machines have a fatal flaw: the delicate quantum states on which they depend last for just a fraction of a second. Fixing that will take years. But if existing machines can be made useful in the meantime, quantum computing could become a commercial reality much sooner than expected.
Virtual influencers
Unlike a human influencer, a virtual influencer will never be late to a photoshoot, get drunk at a party or get old. That is because virtual influencers are computer-generated characters who plug products on Instagram, Facebook and TikTok.
The best known is Miquela Sousa, or “Lil Miquela”, a fictitious Brazilian-American 19-year-old with 3m Instagram followers. With $15bn expected to be spent on influencer marketing in 2022, virtual influencers are proliferating. Aya Stellar—an interstellar traveller crafted by Cosmiq Universe, a marketing agency—will land on Earth in February. She has already released a song on YouTube.
Brain interfaces
In April 2021 the irrepressible entrepreneur Elon Musk excitedly tweeted that a macaque monkey was “literally playing a video game telepathically using a brain chip”. His company, Neuralink, had implanted two tiny sets of electrodes into the monkey’s brain. Signals from these electrodes, transmitted wirelessly and then decoded by a nearby computer, enabled the monkey to move the on-screen paddle in a game of Pong using thought alone.
In 2022 Neuralink hopes to test its device in humans, to enable people who are paralysed to operate a computer. Another firm, Synchron, has already received approval from American regulators to begin human trials of a similar device. Its “minimally invasive” neural prosthetic is inserted into the brain via blood vessels in the neck. As well as helping paralysed people, Synchron is also looking at other uses, such as diagnosing and treating nervous-system conditions including epilepsy, depression and hypertension.
Artificial meat and fish
Winston Churchill once mused about “the absurdity of growing a whole chicken to eat the breast or wing”. Nearly a century later, around 70 companies are “cultivating” meats in bioreactors. Cells taken from animals, without harming them, are nourished in soups rich in proteins, sugars, fats, vitamins and minerals. In 2020 Eat Just, an artificial-meat startup based in San Francisco, became the first company certified to sell its products, in Singapore.
It is expected to be joined by a handful of other firms in 2022. In the coming year an Israeli startup, SuperMeat, expects to win approval for commercial sales of cultivated chicken burgers, grown for $10 a pop—down from $2,500 in 2018, the company says. Finless Foods, based in California, hopes for approval to sell cultivated bluefin tuna, grown for $440 a kilogram—down from $660,000 in 2017. Bacon, turkey and other cultivated meats are in the pipeline. Eco-conscious meat-lovers will soon be able to have their steak—and eat it.
By the Science and technology correspondents of The Economist■
This article appeared in the What next? section of the print edition of The World Ahead 2022 under the headline “What next?”
Você precisa fazer login para comentar.