Arquivo da tag: Infraestrutura

The Coming California Megastorm (New York Times)

nytimes.com

Raymond Zhong


A different ‘Big One’ is approaching. Climate change is hastening its arrival.

Aug. 12, 2022

California, where earthquakes, droughts and wildfires have shaped life for generations, also faces the growing threat of another kind of calamity, one whose fury would be felt across the entire state.

This one will come from the sky.

According to new research, it will very likely take shape one winter in the Pacific, near Hawaii. No one knows exactly when, but from the vast expanse of tropical air around the Equator, atmospheric currents will pluck out a long tendril of water vapor and funnel it toward the West Coast.

This vapor plume will be enormous, hundreds of miles wide and more than 1,200 miles long, and seething with ferocious winds. It will be carrying so much water that if you converted it all to liquid, its flow would be about 26 times what the Mississippi River discharges into the Gulf of Mexico at any given moment.

When this torpedo of moisture reaches California, it will crash into the mountains and be forced upward. This will cool its payload of vapor and kick off weeks and waves of rain and snow.

The coming superstorm — really, a rapid procession of what scientists call atmospheric rivers — will be the ultimate test of the dams, levees and bypasses California has built to impound nature’s might.

But in a state where scarcity of water has long been the central fact of existence, global warming is not only worsening droughts and wildfires. Because warmer air can hold more moisture, atmospheric rivers can carry bigger cargoes of precipitation. The infrastructure design standards, hazard maps and disaster response plans that protected California from flooding in the past might soon be out of date.

As humans burn fossil fuels and heat up the planet, we have already increased the chances each year that California will experience a monthlong, statewide megastorm of this severity to roughly 1 in 50, according to a new study published Friday. (The hypothetical storm visualized here is based on computer modeling from this study.)

In the coming decades, if global average temperatures climb by another 1.8 degrees Fahrenheit, or 1 degree Celsius — and current trends suggest they might — then the likelihood of such storms will go up further, to nearly 1 in 30.

At the same time, the risk of megastorms that are rarer but even stronger, with much fiercer downpours, will rise as well.

These are alarming possibilities. But geological evidence suggests the West has been struck by cataclysmic floods several times over the past millennium, and the new study provides the most advanced look yet at how this threat is evolving in the age of human-caused global warming.

The researchers specifically considered hypothetical storms that are extreme but realistic, and which would probably strain California’s flood preparations. According to their findings, powerful storms that once would not have been expected to occur in an average human lifetime are fast becoming ones with significant risks of happening during the span of a home mortgage.

“We got kind of lucky to avoid it in the 20th century,” said Daniel L. Swain, a climate scientist at the University of California, Los Angeles, who prepared the new study with Xingying Huang of the National Center for Atmospheric Research in Boulder, Colo. “I would be very surprised to avoid it occurring in the 21st.”

Unlike a giant earthquake, the other “Big One” threatening California, an atmospheric river superstorm will not sneak up on the state. Forecasters can now spot incoming atmospheric rivers five days to a week in advance, though they don’t always know exactly where they’ll hit or how intense they’ll be.

Using Dr. Huang and Dr. Swain’s findings, California hopes to be ready even earlier. Aided by supercomputers, state officials plan to map out how all that precipitation will work its way through rivers and over land. They will hunt for gaps in evacuation plans and emergency services.

The last time government agencies studied a hypothetical California megaflood, more than a decade ago, they estimated it could cause $725 billion in property damage and economic disruption. That was three times the projected fallout from a severe San Andreas Fault earthquake, and five times the economic damage from Hurricane Katrina, which left much of New Orleans underwater for weeks in 2005.

Dr. Swain and Dr. Huang have handed California a new script for what could be one of its most challenging months in history. Now begin the dress rehearsals.

“Mother Nature has no obligation to wait for us,” said Michael Anderson, California’s state climatologist.

In fact, nature has not been wasting any time testing California’s defenses. And when it comes to risks to the water system, carbon dioxide in the atmosphere is hardly the state’s only foe.

THE ULTIMATE CURVEBALL

On Feb. 12, 2017, almost 190,000 people living north of Sacramento received an urgent order: Get out. Now. Part of the tallest dam in America was verging on collapse.

That day, Ronald Stork was in another part of the state, where he was worrying about precisely this kind of disaster — at a different dam.

Standing with binoculars near California’s New Exchequer Dam, he dreaded what might happen if large amounts of water were ever sent through the dam’s spillways. Mr. Stork, a policy expert with the conservation group Friends of the River, had seen on a previous visit to Exchequer that the nearby earth was fractured and could be easily eroded. If enough water rushed through, it might cause major erosion and destabilize the spillways.

He only learned later that his fears were playing out in real time, 150 miles north. At the Oroville Dam, a 770-foot-tall facility built in the 1960s, water from atmospheric rivers was washing away the soil and rock beneath the dam’s emergency spillway, which is essentially a hillside next to the main chute that acts like an overflow drain in a bathtub. The top of the emergency spillway looked like it might buckle, which would send a wall of water cascading toward the cities below.

Mr. Stork had no idea this was happening until he got home to Sacramento and found his neighbor in a panic. The neighbor’s mother lived downriver from Oroville. She didn’t drive anymore. How was he going to get her out?

Mr. Stork had filed motions and written letters to officials, starting in 2001, about vulnerabilities at Oroville. People were now in danger because nobody had listened. “It was nearly soul crushing,” he said.

“With flood hazard, it’s never the fastball that hits you,” said Nicholas Pinter, an earth scientist at the University of California, Davis. “It’s the curveball that comes from a direction you don’t anticipate. And Oroville was one of those.”

Ronald Stork in his office at Friends of the River in Sacramento.

The spillway of the New Exchequer Dam.

Such perils had lurked at Oroville for so long because California’s Department of Water Resources had been “overconfident and complacent” about its infrastructure, tending to react to problems rather than pre-empt them, independent investigators later wrote in a report. It is not clear this culture is changing, even as the 21st-century climate threatens to test the state’s aging dams in new ways. One recent study estimated that climate change had boosted precipitation from the 2017 storms at Oroville by up to 15 percent.

A year and a half after the crisis, crews were busy rebuilding Oroville’s emergency spillway when the federal hydropower regulator wrote to the state with some unsettling news: The reconstructed emergency spillway will not be big enough to safely handle the “probable maximum flood,” or the largest amount of water that might ever fall there.

Sources: Global Historical Climatology Network, Huang and Swain (2022) Measurements taken from the Oroville weather station and the nearest modeled data point

This is the standard most major hydroelectric projects in the United States have to meet. The idea is that spillways should basically never fail because of excessive rain.

Today, scientists say they believe climate change might be increasing “probable maximum” precipitation levels at many dams. When the Oroville evacuation was ordered in 2017, nowhere near that much water had been flowing through the dam’s emergency spillway.

Yet California officials have downplayed these concerns about the capacity of Oroville’s emergency spillway, which were raised by the Federal Energy Regulatory Commission. Such extreme flows are a “remote” possibility, they argued in a letter last year. Therefore, further upgrades at Oroville aren’t urgently needed.

In a curt reply last month, the commission said this position was “not acceptable.” It gave the state until mid-September to submit a plan for addressing the issue.

The Department of Water Resources told The Times it would continue studying the matter. The Federal Energy Regulatory Commission declined to comment.

“People could die,” Mr. Stork said. “And it bothers the hell out of me.”

WETTER WET YEARS

Donald G. Sullivan was lying in bed one night, early in his career as a scientist, when he realized his data might hold a startling secret.

For his master’s research at the University of California, Berkeley, he had sampled the sediment beneath a remote lake in the Sacramento Valley and was hoping to study the history of vegetation in the area. But a lot of the pollen in his sediment cores didn’t seem to be from nearby. How had it gotten there?

When he X-rayed the cores, he found layers where the sediment was denser. Maybe, he surmised, these layers were filled with sand and silt that had washed in during floods.

It was only late that night that he tried to estimate the ages of the layers. They lined up neatly with other records of West Coast megafloods.

“That’s when it clicked,” said Dr. Sullivan, who is now at the University of Denver.

His findings, from 1982, showed that major floods hadn’t been exceptionally rare occurrences over the past eight centuries. They took place every 100 to 200 years. And in the decades since, advancements in modeling have helped scientists evaluate how quickly the risks are rising because of climate change.

For their new study, which was published in the journal Science Advances, Dr. Huang and Dr. Swain replayed portions of the 20th and 21st centuries using 40 simulations of the global climate. Extreme weather events, by definition, don’t occur very often. So by using computer models to create realistic alternate histories of the past, present and future climate, scientists can study a longer record of events than the real world offers.

Dr. Swain and Dr. Huang looked at all the monthlong California storms that took place during two time segments in the simulations, one in the recent past and the other in a future with high global warming, and chose one of the most intense events from each period. They then used a weather model to produce detailed play-by-plays of where and when the storms dump their water.

Those details matter. There are “so many different factors” that make an atmospheric river deadly or benign, Dr. Huang said.

Xingying Huang of the National Center for Atmospheric Research in Boulder, Colo. Rachel Woolf for The New York Times

The New Don Pedro Dam spillway.

Wes Monier, a hydrologist, with a 1997 photo of water rushing through the New Don Pedro Reservoir spillway.

In the high Sierras, for example, atmospheric rivers today largely bring snow. But higher temperatures are shifting the balance toward rain. Some of this rain can fall on snowpack that accumulated earlier, melting it and sending even more water toward towns and cities below.

Climate change might be affecting atmospheric rivers in other ways, too, said F. Martin Ralph of the Scripps Institution of Oceanography at the University of California, San Diego. How strong their winds are, for instance. Or how long they last: Some storms stall, barraging an area for days on end, while others blow through quickly.

Scientists are also working to improve atmospheric river forecasts, which is no easy task as the West experiences increasingly sharp shifts from very dry conditions to very wet and back again. In October, strong storms broke records in Sacramento and other places. Yet this January through March was the driest in the Sierra Nevada in more than a century.

“My scientific gut says there’s change happening,” Dr. Ralph said. “And we just haven’t quite pinned down how to detect it adequately.”

Better forecasting is already helping California run some of its reservoirs more efficiently, a crucial step toward coping with wetter wet years and drier dry ones.

On the last day of 2016, Wes Monier was looking at forecasts on his iPad and getting a sinking feeling.

Mr. Monier is chief hydrologist for the Turlock Irrigation District, which operates the New Don Pedro Reservoir near Modesto. The Tuolumne River, where the Don Pedro sits, was coming out of its driest four years in a millennium. Now, some terrifying rainfall projections were rolling in.

First, 23.2 inches over the next 16 days. A day later: 28.8 inches. Then 37.1 inches, roughly what the area normally received in a full year.

If Mr. Monier started releasing Don Pedro’s water too quickly, homes and farms downstream would flood. Release too much and he would be accused of squandering water that would be precious come summer.

But the forecasts helped him time his flood releases precisely enough that, after weeks of rain, the water in the dam ended up just shy of capacity. Barely a drop was wasted, although some orchards were flooded, and growers took a financial hit.

The next storm might be even bigger, though. And even the best data and forecasts might not allow Mr. Monier to stop it from causing destruction. “There’s a point there where I can’t do anything,” he said.

KATRINA 2.0

How do you protect a place as vast as California from a storm as colossal as that? Two ways, said David Peterson, a veteran engineer. Change where the water goes, or change where the people are. Ideally, both. But neither is easy.

Firebaugh is a quiet, mostly Hispanic city of 8,100 people, one of many small communities that power the Central Valley’s prodigious agricultural economy. Many residents work at nearby facilities that process almonds, pistachios, garlic and tomatoes.

Firebaugh also sits right on the San Joaquin River.

For a sleepless stretch of early 2017, Ben Gallegos, Firebaugh’s city manager, did little but watch the river rise and debate whether to evacuate half the town. Water from winter storms had already turned the town’s cherished rodeo grounds into a swamp. Now it was threatening homes, schools, churches and the wastewater treatment plant. If that flooded, people would be unable to flush their toilets. Raw sewage would flow down the San Joaquin.

Luckily, the river stopped rising. Still, the experience led Mr. Gallegos to apply for tens of millions in funding for new and improved levees around Firebaugh.

Levees change where the water goes, giving rivers more room to swell before they inundate the land. Levee failures in New Orleans were what turned Katrina into an epochal catastrophe, and after that storm, California toughened levee standards in urbanized areas of the Sacramento and San Joaquin Valleys, two major river basins of the Central Valley.

The idea is to keep people out of places where the levees don’t protect against 200-year storms, or those with a 0.5 percent chance of occurring in any year. To account for rising seas and the shifting climate, California requires that levees be recertified as providing this level of defense at least every 20 years.

Firebaugh, Calif., on the San Joaquin River, is home to 8,100 people and helps power the Central Valley’s agricultural economy.

Ben Gallegos, the Firebaugh city manager.

A 6-year-old’s birthday celebration in Firebaugh.

The problem is that once levees are strengthened, the areas behind them often become particularly attractive for development: fancier homes, bigger buildings, more people. The likelihood of a disaster is reduced, but the consequences, should one strike, are increased.

Federal agencies try to stop this by not funding infrastructure projects that induce growth in flood zones. But “it’s almost impossible to generate the local funds to raise that levee if you don’t facilitate some sort of growth behind the levee,” Mr. Peterson said. “You need that economic activity to pay for the project,” he said. “It puts you in a Catch-22.”

A project to provide 200-year protection to the Mossdale Tract, a large area south of Stockton, one of the San Joaquin Valley’s major cities, has been on pause for years because the Army Corps of Engineers fears it would spur growth, said Chris Elias, executive director of the San Joaquin Area Flood Control Agency, which is leading the project. City planners have agreed to freeze development across thousands of acres, but the Corps still hasn’t given its final blessing.

The Corps and state and local agencies will begin studying how best to protect the area this fall, said Tyler M. Stalker, a spokesman for the Corps’s Sacramento District.

The plodding pace of work in the San Joaquin Valley has set people on edge. At a recent public hearing in Stockton on flood risk, Mr. Elias stood up and highlighted some troubling math.

The Department of Water Resources says up to $30 billion in investment is needed over the next 30 years to keep the Central Valley safe. Yet over the past 15 years, the state managed to spend only $3.5 billion.

“We have to find ways to get ahead of the curve,” Mr. Elias said. “We don’t want to have a Katrina 2.0 play out right here in the heart of Stockton.”

As Mr. Elias waits for projects to be approved and budgets to come through, heat and moisture will continue to churn over the Pacific. Government agencies, battling the forces of inertia, indifference and delay, will make plans and update policies. And Stockton and the Central Valley, which runs through the heart of California, will count down the days and years until the inevitable storm.

T​​he Sacramento-San Joaquin Delta near Stockton, Calif.

Sources

The megastorm simulation is based on the “ARkHist” storm modeled by Huang and Swain, Science Advances (2022), a hypothetical statewide, 30-day atmospheric river storm sequence over California with an approximately 2 percent likelihood of occurring each year in the present climate. Data was generated using the Weather Research and Forecasting model and global climate simulations from the Community Earth System Model Large Ensemble.

The chart of precipitation at Oroville compares cumulative rainfall at the Oroville weather station before the 2017 crisis with cumulative rainfall at the closest data point in ARkHist.

The rainfall visualization compares observed hourly rainfall in December 2016 from the Los Angeles Downtown weather station with rainfall at the closest data point in a hypothetical future megastorm, the ARkFuture scenario in Huang and Swain (2022). This storm would be a rare but plausible event in the second half of the 21st century if nations continue on a path of high greenhouse-gas emissions.

Additional credits

The 3D rainfall visualization and augmented reality effect by Nia Adurogbola, Jeffrey Gray, Evan Grothjan, Lydia Jessup, Max Lauter, Daniel Mangosing, Noah Pisner, James Surdam and Raymond Zhong.

Photo editing by Matt McCann.

Produced by Sarah Graham, Claire O’Neill, Jesse Pesta and Nadja Popovich.

Audio produced by Kate Winslett.

What the Shipping Crisis Looks Like at a U.S. Port (New York Times)

nytimes.com

Peter S. Goodman, photographs by Erin Schaff


The Port of Savannah in Georgia is the third-largest container port in the United States.
The Port of Savannah in Georgia is the third-largest container port in the United States. 

An enduring traffic jam at the Port of Savannah reveals why the chaos in global shipping is likely to persist.

Published Oct. 10, 2021; Updated Oct. 14, 2021

SAVANNAH, Ga. — Like toy blocks hurled from the heavens, nearly 80,000 shipping containers are stacked in various configurations at the Port of Savannah — 50 percent more than usual.

The steel boxes are waiting for ships to carry them to their final destination, or for trucks to haul them to warehouses that are themselves stuffed to the rafters. Some 700 containers have been left at the port, on the banks of the Savannah River, by their owners for a month or more.

“They’re not coming to get their freight,” complained Griff Lynch, the executive director of the Georgia Ports Authority. “We’ve never had the yard as full as this.”

As he speaks, another vessel glides silently toward an open berth — the 1,207-foot-long Yang Ming Witness, its decks jammed with containers full of clothing, shoes, electronics and other stuff made in factories in Asia. Towering cranes soon pluck the thousands of boxes off the ship — more cargo that must be stashed somewhere.

“Certainly,” Mr. Lynch said, “the stress level has never been higher.”

It has come to this in the Great Supply Chain Disruption: They are running out of places to put things at one of the largest ports in the United States. As major ports contend with a staggering pileup of cargo, what once seemed like a temporary phenomenon — a traffic jam that would eventually dissipate — is increasingly viewed as a new reality that could require a substantial refashioning of the world’s shipping infrastructure.

As the Savannah port works through the backlog, Mr. Lynch has reluctantly forced ships to wait at sea for more than nine days. On a recent afternoon, more than 20 ships were stuck in the queue, anchored up to 17 miles off the coast in the Atlantic.

Nearly 80,000 containers jam the port, 50 percent more than usual.

Such lines have become common around the globe, from the more than 50 ships marooned last week in the Pacific near Los Angeles to smaller numbers bobbing off terminals in the New York area, to hundreds waylaid off ports in China.

The turmoil in the shipping industry and the broader crisis in supply chains is showing no signs of relenting. It stands as a gnawing source of worry throughout the global economy, challenging once-hopeful assumptions of a vigorous return to growth as vaccines limit the spread of the pandemic.

The disruption helps explain why Germany’s industrial fortunes are sagging, why inflation has become a cause for concern among central bankers, and why American manufacturers are now waiting a record 92 days on average to assemble the parts and raw materials they need to make their goods, according to the Institute of Supply Management.

On the surface, the upheaval appears to be a series of intertwined product shortages. Because shipping containers are in short supply in China, factories that depend on Chinese-made parts and chemicals in the rest of the world have had to limit production.

But the situation at the port of Savannah attests to a more complicated and insidious series of overlapping problems. It is not merely that goods are scarce. It is that products are stuck in the wrong places, and separated from where they are supposed to be by stubborn and constantly shifting barriers.

The shortage of finished goods at retailers represents the flip side of the containers stacked on ships marooned at sea and massed on the riverbanks. The pileup in warehouses is itself a reflection of shortages of truck drivers needed to carry goods to their next destinations.

For Mr. Lynch, the man in charge in Savannah, frustrations are enhanced by a sense of powerlessness in the face of circumstances beyond his control. Whatever he does to manage his docks alongside the murky Savannah River, he cannot tame the bedlam playing out on the highways, at the warehouses, at ports across the ocean and in factory towns around the world.

“The supply chain is overwhelmed and inundated,” Mr. Lynch said. “It’s not sustainable at this point. Everything is out of whack.”

Born and raised in Queens with the no-nonsense demeanor to prove it, Mr. Lynch, 55, has spent his professional life tending to the logistical complexities of sea cargo. (“I actually wanted to be a tugboat captain,” he said. “There was only one problem. I get seasick.”)

Now, he is contending with a storm whose intensity and contours are unparalleled, a tempest that has effectively extended the breadth of oceans and added risk to sea journeys.

Last month, his yard held 4,500 containers that had been stuck on the docks for at least three weeks. “That’s bordering on ridiculous,” he said.

That these tensions are playing out even in Savannah attests to the magnitude of the disarray. The third-largest container port in the United States after Los Angeles-Long Beach and New York-New Jersey, Savannah boasts nine berths for container ships and abundant land for expansion.

To relieve the congestion, Mr. Lynch is overseeing a $600 million expansion. He is swapping out one berth for a bigger one to accommodate the largest container ships. He is extending the storage yard across another 80 acres, adding room for 6,000 more containers. He is enlarging his rail yard to 18 tracks from five to allow more trains to pull in, building out an alternative to trucking.

But even as Mr. Lynch sees development as imperative, he knows that expanded facilities alone will not solve his problems.

“If there’s no space out here,” he said, looking out at the stacks of containers, “it doesn’t matter if I have 50 berths.”

Many of the containers are piled five high, making it harder for cranes to sort through the towers to lift the needed boxes when trucks arrive to take them away.

On this afternoon, under a merciless sun, the port is on track to break its record for activity in a single day — more than 15,000 trucks coming and going. Still, the pressure builds. A tugboat escorts another ship to the dock — the MSC AGADIR, fresh from the Panama Canal — bearing more cargo that must be parked somewhere.

In recent weeks, the shutdown of a giant container terminal off the Chinese city of Ningbo has added to delays. Vietnam, a hub for the apparel industry, was locked down for several months in the face of a harrowing outbreak of Covid. Diminished cargo leaving Asia should provide respite to clogged ports in the United States, but Mr. Lynch dismisses that line.

“Six or seven weeks later, the ships come in all at once,” Mr. Lynch said. “That doesn’t help.”

Early this year, as shipping prices spiked and containers became scarce, the trouble was widely viewed as the momentary result of pandemic lockdowns. With schools and offices shut, Americans were stocking up on home office gear and equipment for basement gyms, drawing heavily on factories in Asia. Once life reopened, global shipping was supposed to return to normal.

But half a year later, the congestion is worse, with nearly 13 percent of the world’s cargo shipping capacity tied up by delays, according to data compiled by Sea-Intelligence, an industry research firm in Denmark.

Many businesses now assume that the pandemic has fundamentally altered commercial life in permanent ways. Those who might never have shopped for groceries or clothing online — especially older people — have gotten a taste of the convenience, forced to adjust to a lethal virus. Many are likely to retain the habit, maintaining pressure on the supply chain.

“Before the pandemic, could we have imagined mom and dad pointing and clicking to buy a piece of furniture?” said Ruel Joyner, owner of 24E Design Co., a boutique furniture outlet that occupies a brick storefront in Savannah’s graceful historic district. His online sales have tripled over the past year.

On top of those changes in behavior, the supply chain disruption has imposed new frictions.

Mr. Joyner, 46, designs his furniture in Savannah while relying on factories from China and India to manufacture many of his wares. The upheaval on the seas has slowed deliveries, limiting his sales.

He pointed to a brown leather recliner made for him in Dallas. The factory is struggling to secure the reclining mechanism from its supplier in China.

“Where we were getting stuff in 30 days, they are now telling us six months,” Mr. Joyner said. Customers are calling to complain.

His experience also underscores how the shortages and delays have become a source of concern about fair competition. Giant retailers like Target and Home Depot have responded by stockpiling goods in warehouses and, in some cases, chartering their own ships. These options are not available to the average small business.

Bottlenecks have a way of causing more bottlenecks. As many companies have ordered extra and earlier, especially as they prepare for the all-consuming holiday season, warehouses have become jammed. So containers have piled up at the Port of Savannah.

Mr. Lynch’s team — normally focused on its own facilities — has devoted time to scouring unused warehouse spaces inland, seeking to provide customers with alternative channels for their cargo.

Recently, a major retailer completely filled its 3 million square feet of local warehouse space. With its containers piling up in the yard, port staff worked to ship the cargo by rail to Charlotte, N.C., where the retailer had more space.

Such creativity may provide a modicum of relief, but the demands on the port are only intensifying.

On a muggy afternoon in late September, Christmas suddenly felt close at hand. The containers stacked on the riverbanks were surely full of holiday decorations, baking sheets, gifts and other material for the greatest wave of consumption on earth.

Will they get to stores in time?

“That’s the question everyone is asking,” Mr. Lynch said. “I think that’s a very tough question.”

Joe Biden’s splurge on infrastructure moves a step closer (The Economist)

economist.com

Aug 11th 2021


Bridge and tunnel
Joe Biden’s splurge on infrastructure moves a step closer
And on the climate and the safety-net, too. Congress works, maybe?

“THE ICEMAN COMETH” is a play about the downtrodden patrons of Harry Hope’s saloon, who exchange reveries for one another’s pipe dreams. For a while President Joe Biden’s aspirations for a gargantuan infrastructure and social-services package—spending $4trn in order to “build back better”—resembled those of a misbegotten Eugene O’Neill character. The weeks dragged on and negotiations appeared fruitless. Yet in the usually soporific month of August, Mr Biden finds that his pipe dream might in fact yield some actual pipes, plus extra sending on the safety net and climate change too.

On August 10th the Senate passed a bipartisan infrastructure package spanning 2,700 pages, which contains plans to spend $550bn, or 2.5% of GDP, most of it on bridges, roads and railway lines. And then in the early hours of August 11th, the Senate fired the starting gun for the drafting of a budget resolution—a $3.5trn package stuffed with all of Mr Biden’s other partisan aims, the details of which will be negotiated in the months to come.

The White House has made greater headway than many expected. Yet turning this into actual spending will require still more effort. To mollify antsy progressives, neither bill is expected to arrive on the president’s desk without the other. Nancy Pelosi, the Democratic speaker of the House of Representatives, has pledged as much and is not known for bluffing.

So success for Mr Biden continues to depend on an odd-couple strategy: yoking the bipartisan bits of his agenda (traditional spending on roads, bridges, broadband and waterways, largely unmatched by tax increases) to the purely Democratic wish-list (enormous spending on climate-change mitigation and a safety-net expansion, along with much higher taxes on wealthy people and corporations). This approach withstood early defections by Republicans who feared they had been had. Now it must prove itself capable of delivering the remaining legislation, which will be mostly an exercise in Democratic cohesion. If all this works, it will probably become the defining accomplishment of the Biden presidency.

Securing both bills will be hard. To pass their other policy aspirations without any Republican votes, Democrats will now employ a procedure known as budgetary reconciliation, which sidesteps a filibuster if certain conditions are met. Shepherding such a package through Congress requires co-ordinating efforts from a score of committees. That task can now begin: in the early hours of August 11th Democrats passed a budget resolution, a skeletal framing document that gives each committee instructions on how much it can spend. This marks the true start of the hard work: drafting legislative text, collating it into one mega-package and passing it without any Democratic defections—for anything less, in the face of unified Republican opposition, would spell defeat.

Reconciliation is not pretty. Since its use is limited to budgetary matters, it cannot be resorted to often. And since Democrats fear that they will lose their slim majorities in the coming mid-term elections, they have an incentive to hitch any partisan priority that they want to become law onto this omnibus bill.

This bill will be stuffed therefore. Committees will draw up plans to spend hundreds of billions on climate-change research, electric-vehicle charging stations and a Civilian Climate Corps; more than $1trn on various safety-net enhancements like extended child-tax credits, subsidised child care and family leave; and educational benefits from pre-kindergarten to community college. There will be a parallel effort to pay for this by raising the taxes on corporate profits, especially of the overseas variety, and high personal incomes.

These legislative schemes would almost certainly increase American deficits and debts beyond their already eye-popping levels. The Congressional Budget Office (CBO), a non-partisan scorekeeper, estimates that America will run a $3trn deficit in Mr Biden’s first year—much of that is the result of the $1.9trn stimulus measure that the president signed into law soon after assuming office. At 13.4% of GDP, the deficit will be the highest in the first year of any modern president (see chart).

The proposed spending on infrastructure and the safety-net would be spread over ten years, not concentrated in just one. Still, it is remarkable that, if Mr Biden gets his way, he could sign legislation authorising the spending of just under $6trn, almost 30% of GDP, in his first year in office. More of the infrastructure spending will be covered by revenue than was the case for the covid-19 relief measure, but a substantial portion will not be.

The CBO‘s assessment of the bipartisan package passed by the Senate found that it would add $256bn to the federal debt. The budget resolution recently passed by Democrats would allow $1.75trn to be added to the tab—suggesting that only half of their proposal could be paid for (and belying the White House’s repeated insistence that it would be fully funded). Already, Janet Yellen, the treasury secretary, warns that the debt ceiling will need to be raised by October 1st to accommodate the current pace of spending.

Almost none of the legislating over the next few months will appeal to Republicans. But that is the point of the segmentation strategy that Mr Biden has chosen. He has pulled off a surprising victory in the bipartisan campaign. The partisan battle promises to be every bit as arduous. ■

For more coverage of Joe Biden’s presidency, visit our dedicated hub

This article appeared in the United States section of the print edition under the headline “Function in Washington”

Texas Blackouts Point to Coast-to-Coast Crises Waiting to Happen (New York Times)

nytimes.com

Christopher Flavelle, Brad Plumer, Hiroko Tabuchi – Feb 20, 2021


Traffic at a standstill on Interstate 35 in Kileen, Texas, on Thursday.
Traffic at a standstill on Interstate 35 in Kileen, Texas, on Thursday. Credit: Joe Raedle/Getty Images
Continent-spanning storms triggered blackouts in Oklahoma and Mississippi, halted one-third of U.S. oil production and disrupted vaccinations in 20 states.

Even as Texas struggled to restore electricity and water over the past week, signs of the risks posed by increasingly extreme weather to America’s aging infrastructure were cropping up across the country.

The week’s continent-spanning winter storms triggered blackouts in Texas, Oklahoma, Mississippi and several other states. One-third of oil production in the nation was halted. Drinking-water systems in Ohio were knocked offline. Road networks nationwide were paralyzed and vaccination efforts in 20 states were disrupted.

The crisis carries a profound warning. As climate change brings more frequent and intense storms, floods, heat waves, wildfires and other extreme events, it is placing growing stress on the foundations of the country’s economy: Its network of roads and railways, drinking-water systems, power plants, electrical grids, industrial waste sites and even homes. Failures in just one sector can set off a domino effect of breakdowns in hard-to-predict ways.

Much of this infrastructure was built decades ago, under the expectation that the environment around it would remain stable, or at least fluctuate within predictable bounds. Now climate change is upending that assumption.

“We are colliding with a future of extremes,” said Alice Hill, who oversaw planning for climate risks on the National Security Council during the Obama administration. “We base all our choices about risk management on what’s occurred in the past, and that is no longer a safe guide.”

While it’s not always possible to say precisely how global warming influenced any one particular storm, scientists said, an overall rise in extreme weather creates sweeping new risks.

Sewer systems are overflowing more often as powerful rainstorms exceed their design capacity. Coastal homes and highways are collapsing as intensified runoff erodes cliffs. Coal ash, the toxic residue produced by coal-burning plants, is spilling into rivers as floods overwhelm barriers meant to hold it back. Homes once beyond the reach of wildfires are burning in blazes they were never designed to withstand.

A broken water main in McComb., Miss. on Thursday.
Credit: Matt Williamson/The Enterprise-Journal, via Associated Press

Problems like these often reflect an inclination of governments to spend as little money as possible, said Shalini Vajjhala, a former Obama administration official who now advises cities on meeting climate threats. She said it’s hard to persuade taxpayers to spend extra money to guard against disasters that seem unlikely.

But climate change flips that logic, making inaction far costlier. “The argument I would make is, we can’t afford not to, because we’re absorbing the costs” later, Ms. Vajjhala said, after disasters strike. “We’re spending poorly.”

The Biden administration has talked extensively about climate change, particularly the need to reduce greenhouse gas emissions and create jobs in renewable energy. But it has spent less time discussing how to manage the growing effects of climate change, facing criticism from experts for not appointing more people who focus on climate resilience.

“I am extremely concerned by the lack of emergency-management expertise reflected in Biden’s climate team,” said Samantha Montano, an assistant professor at the Massachusetts Maritime Academy who focuses on disaster policy. “There’s an urgency here that still is not being reflected.”

A White House spokesman, Vedant Patel, said in a statement, “Building resilient and sustainable infrastructure that can withstand extreme weather and a changing climate will play an integral role in creating millions of good paying, union jobs” while cutting greenhouse gas emissions.

And while President Biden has called for a major push to refurbish and upgrade the nation’s infrastructure, getting a closely divided Congress to spend hundreds of billions, if not trillions of dollars, will be a major challenge.

Heightening the cost to society, disruptions can disproportionately affect lower-income households and other vulnerable groups, including older people or those with limited English.

“All these issues are converging,” said Robert D. Bullard, a professor at Texas Southern University who studies wealth and racial disparities related to the environment. “And there’s simply no place in this country that’s not going to have to deal with climate change.”

Flooding around Edenville Township, Mich., last year swept away a bridge over the Tittabawassee River.
Credit: Matthew Hatcher/Getty Images

In September, when a sudden storm dumped a record of more than two inches of water on Washington in less than 75 minutes, the result wasn’t just widespread flooding, but also raw sewage rushing into hundreds of homes.

Washington, like many other cities in the Northeast and Midwest, relies on what’s called a combined sewer overflow system: If a downpour overwhelms storm drains along the street, they are built to overflow into the pipes that carry raw sewage. But if there’s too much pressure, sewage can be pushed backward, into people’s homes — where the forces can send it erupting from toilets and shower drains.

This is what happened in Washington. The city’s system was built in the late 1800s. Now, climate change is straining an already outdated design.

DC Water, the local utility, is spending billions of dollars so that the system can hold more sewage. “We’re sort of in uncharted territory,” said Vincent Morris, a utility spokesman.

The challenge of managing and taming the nation’s water supplies — whether in streets and homes, or in vast rivers and watersheds — is growing increasingly complex as storms intensify. Last May, rain-swollen flooding breached two dams in Central Michigan, forcing thousands of residents to flee their homes and threatening a chemical complex and toxic waste cleanup site. Experts warned it was unlikely to be the last such failure.

Many of the country’s 90,000 dams were built decades ago and were already in dire need of repairs. Now climate change poses an additional threat, bringing heavier downpours to parts of the country and raising the odds that some dams could be overwhelmed by more water than they were designed to handle. One recent study found that most of California’s biggest dams were at increased risk of failure as global warming advances.

In recent years, dam-safety officials have begun grappling with the dangers. Colorado, for instance, now requires dam builders to take into account the risk of increased atmospheric moisture driven by climate change as they plan for worst-case flooding scenarios.

But nationwide, there remains a backlog of thousands of older dams that still need to be rehabilitated or upgraded. The price tag could ultimately stretch to more than $70 billion.

“Whenever we study dam failures, we often find there was a lot of complacency beforehand,” said Bill McCormick, president of the Association of State Dam Safety Officials. But given that failures can have catastrophic consequences, “we really can’t afford to be complacent.”

Crews repaired switches on utility poles damaged by the storms in Texas.
Credit: Tamir Kalifa for The New York Times

If the Texas blackouts exposed one state’s poor planning, they also provide a warning for the nation: Climate change threatens virtually every aspect of electricity grids that aren’t always designed to handle increasingly severe weather. The vulnerabilities show up in power lines, natural-gas plants, nuclear reactors and myriad other systems.

Higher storm surges can knock out coastal power infrastructure. Deeper droughts can reduce water supplies for hydroelectric dams. Severe heat waves can reduce the efficiency of fossil-fuel generators, transmission lines and even solar panels at precisely the moment that demand soars because everyone cranks up their air-conditioners.

Climate hazards can also combine in new and unforeseen ways.

In California recently, Pacific Gas & Electric has had to shut off electricity to thousands of people during exceptionally dangerous fire seasons. The reason: Downed power lines can spark huge wildfires in dry vegetation. Then, during a record-hot August last year, several of the state’s natural gas plants malfunctioned in the heat, just as demand was spiking, contributing to blackouts.

“We have to get better at understanding these compound impacts,” said Michael Craig, an expert in energy systems at the University of Michigan who recently led a study looking at how rising summer temperatures in Texas could strain the grid in unexpected ways. “It’s an incredibly complex problem to plan for.”

Some utilities are taking notice. After Superstorm Sandy in 2012 knocked out power for 8.7 million customers, utilities in New York and New Jersey invested billions in flood walls, submersible equipment and other technology to reduce the risk of failures. Last month, New York’s Con Edison said it would incorporate climate projections into its planning.

As freezing temperatures struck Texas, a glitch at one of two reactors at a South Texas nuclear plant, which serves 2 million homes, triggered a shutdown. The cause: Sensing lines connected to the plant’s water pumps had frozen, said Victor Dricks, a spokesman for the federal Nuclear Regulatory Agency.

It’s also common for extreme heat to disrupt nuclear power. The issue is that the water used to cool reactors can become too warm to use, forcing shutdowns.

Flooding is another risk.

After a tsunami led to several meltdowns at Japan’s Fukushima Daiichi power plant in 2011, the U.S. Nuclear Regulatory Commission told the 60 or so working nuclear plants in the United States, many decades old, to evaluate their flood risk to account for climate change. Ninety percent showed at least one type of flood risk that exceeded what the plant was designed to handle.

The greatest risk came from heavy rain and snowfall exceeding the design parameters at 53 plants.

Scott Burnell, an Nuclear Regulatory Commission spokesman, said in a statement, “The NRC continues to conclude, based on the staff’s review of detailed analyses, that all U.S. nuclear power plants can appropriately deal with potential flooding events, including the effects of climate change, and remain safe.”

A section of Highway 1 along the California coastline collapsed in January amid heavy rains.
Credit: Josh Edelson/Agence France-Presse — Getty Images

The collapse of a portion of California’s Highway 1 into the Pacific Ocean after heavy rains last month was a reminder of the fragility of the nation’s roads.

Several climate-related risks appeared to have converged to heighten the danger. Rising seas and higher storm surges have intensified coastal erosion, while more extreme bouts of precipitation have increased the landslide risk.

Add to that the effects of devastating wildfires, which can damage the vegetation holding hillside soil in place, and “things that wouldn’t have slid without the wildfires, start sliding,” said Jennifer M. Jacobs, a professor of civil and environmental engineering at the University of New Hampshire. “I think we’re going to see more of that.”

The United States depends on highways, railroads and bridges as economic arteries for commerce, travel and simply getting to work. But many of the country’s most important links face mounting climate threats. More than 60,000 miles of roads and bridges in coastal floodplains are already vulnerable to extreme storms and hurricanes, government estimates show. And inland flooding could also threaten at least 2,500 bridges across the country by 2050, a federal climate report warned in 2018.

Sometimes even small changes can trigger catastrophic failures. Engineers modeling the collapse of bridges over Escambia Bay in Florida during Hurricane Ivan in 2004 found that the extra three inches of sea-level rise since the bridge was built in 1968 very likely contributed to the collapse, because of the added height of the storm surge and force of the waves.

“A lot of our infrastructure systems have a tipping point. And when you hit the tipping point, that’s when a failure occurs,” Dr. Jacobs said. “And the tipping point could be an inch.”

Crucial rail networks are at risk, too. In 2017, Amtrak consultants found that along parts of the Northeast corridor, which runs from Boston to Washington and carries 12 million people a year, flooding and storm surge could erode the track bed, disable the signals and eventually put the tracks underwater.

And there is no easy fix. Elevating the tracks would require also raising bridges, electrical wires and lots of other infrastructure, and moving them would mean buying new land in a densely packed part of the country. So the report recommended flood barriers, costing $24 million per mile, that must be moved into place whenever floods threaten.

A worker checked efforts to prevent coal ash from escaping into the Waccamaw River in South Carolina after Hurricane Florence in 2018.
Credit: Randall Hill/Reuters

A series of explosions at a flood-damaged chemical plant outside Houston after Hurricane Harvey in 2017 highlighted a danger lurking in a world beset by increasingly extreme weather.

The blasts at the plant came after flooding knocked out the site’s electrical supply, shutting down refrigeration systems that kept volatile chemicals stable. Almost two dozen people, many of them emergency workers, were treated for exposure to the toxic fumes, and some 200 nearby residents were evacuated from their homes.

More than 2,500 facilities that handle toxic chemicals lie in federal flood-prone areas across the country, about 1,400 of them in areas at the highest risk of flooding, a New York Times analysis showed in 2018.

Leaks from toxic cleanup sites, left behind by past industry, pose another threat.

Almost two-thirds of some 1,500 superfund cleanup sites across the country are in areas with an elevated risk of flooding, storm surge, wildfires or sea level rise, a government audit warned in 2019. Coal ash, a toxic substance produced by coal power plants that is often stored as sludge in special ponds, have been particularly exposed. After Hurricane Florence in 2018, for example, a dam breach at the site of a power plant in Wilmington, N.C., released the hazardous ash into a nearby river.

“We should be evaluating whether these facilities or sites actually have to be moved or re-secured,” said Lisa Evans, senior counsel at Earthjustice, an environmental law organization. Places that “may have been OK in 1990,” she said, “may be a disaster waiting to happen in 2021.”

East Austin, Texas, during a blackout on Wednesday.  
Credit: Bronte Wittpenn/Austin American-Statesman, via Associated Press

Sabesp admite que rodízio pode contaminar água (Estadão)

Pedro Venceslau e Fabio Leite – O Estado de S. Paulo

26 Fevereiro 2015 | 03h 00

Diretor disse em CPI que problema não colocaria usuário em risco; empresa também afirmou que pressão está fora da norma

SÃO PAULO – O risco de contaminação da água admitido nesta quarta-feira, 25, pelo diretor metropolitano da Companhia de Saneamento Básico do Estado de São Paulo (Sabesp), Paulo Massato, em caso de rodízio oficial já é realidade em algumas regiões altas da Grande São Paulo. São locais onde a rede fica despressurizada após o fechamento manual dos registros na rua, conforme um alto dirigente da empresa admitiu ao Estado no início do mês.

“Se implementado o rodízio, a rede fica despressurizada, principalmente em regiões de topografia acidentada, nos pontos em que a tubulação está em declive. Se o lençol freático está contaminado, isso aumenta o risco de contaminação (da água na rede)”, afirmou Massato, nesta quarta, durante sessão da CPI da Sabesp na Câmara Municipal.

O resultado desse contágio, segundo ele, não colocaria a vida dos consumidores em risco, mas poderia causar disenteria, por exemplo. “Nós temos hoje medicina suficiente para minimizar risco de vida para a população. Uma disenteria pode ser mais grave ou menos grave, mas é um risco (implementar o rodízio) que nós queremos evitar ”, completou. Apesar do alerta, ele disse que a estatal poderia “descontaminar” rapidamente a água afetada.

Hélvio Romero/Estadão

‘Estamos em uma situação de anormalidade. Nós não conseguiríamos abastecer 6 milhões de habitantes se mantivéssemos a normalidade’, disse Massato

No início do mês, um dirigente da Sabesp admitiu ao Estado que em 40% da rede onde não há válvulas redutoras de pressão (VRPs) instaladas, o racionamento de água é feito por meio do fechamento manual, flagrado pela reportagem na Vila Brasilândia, zona norte da capital. Segundo ele, a manobra “não esvazia totalmente” a rede, mas “despressuriza pontos mais altos”.

“A zona baixa fica com água. Se não houver consumo excessivo, a maior parte da rede fica com água. Acaba despressurizando zonas altas, isso acontece mesmo. Tanto é que quando abre (o registro) para encher de novo, as zonas mais altas e distantes acabam sofrendo mais, ficando mais tempo sem água”, afirmou.

Para o engenheiro Antonio Giansante, professor de Engenharia Hídrica do Mackenzie, é grande o risco de contaminação em caso de fechamento da rede. “Em uma eventualidade de o tubo estar seco, pode ser que entre água de qualidade não controlada, em geral, contaminada por causa das redes coletoras de esgoto, para dentro da rede da Sabesp.”

Segundo interlocutores do governador Geraldo Alckmin (PSDB), a declaração desagradou o tucano, uma vez que o rodízio não está descartado. Massato já havia causado constrangimento ao governo ao dizer, em 27 de janeiro, que São Paulo poderia ficar até cinco dias sem água por semana em caso de racionamento.

Fora da norma. Massato e o presidente da Sabesp, Jerson Kelman, que também prestou depoimento à CPI, admitiram aos vereadores que a empresa mantém a pressão da água na rede abaixo do recomendado pela Associação Brasileira de Normas Técnicas (ABNT), conforme o Estado revelou no início do mês. Segundo o órgão, são necessários ao menos 10 metros de coluna de água para encher todas as caixas.

“Nós estamos garantindo 1 metro da coluna de água, preservando a rede de distribuição. Mas não tem pressão suficiente para chegar na caixa d’água”, admitiu Massato. “Estamos abaixo dos 10 metros de coluna de água, principalmente nas zonas mais altas e mais distantes dos reservatórios.”

“Essa é uma medida mitigadora para evitar algo muito pior para a população, que é o rodízio”, afirmou Kelman. “São poucos pontos na rede em que não se tem a pressão exigida pela ABNT para condições normais. Isso não é uma opção da Sabesp. Não estamos em condições normais”, completou.

Em dezembro, Alckmin disse que a Sabesp cumpria “rigorosamente” a norma técnica. A Sabesp foi notificada pela Agência Reguladora de Saneamento e Energia do Estado de São Paulo (Arsesp) e respondeu na terça-feira aos questionamentos feitos sobre as manobras na rede. O órgão fiscalizador, contudo, ainda não se pronunciou.

Ar encanado. Questionados sobre a investigação do Ministério Público Estadual que apura suposta cobrança por “ar encanado” pela Sabesp, revelada pelo Estado, os dirigentes da empresa disseram que a prática atingiu apenas 2% dos clientes. Das 22 mil reclamações registradas em fevereiro sobre aumento indevido da conta, 500 culpavam o ar encanado. O problema ocorre quando a água retorna na rede e empurra o ar de volta para as ligações das casas, podendo adulterar a medição do hidrômetro. / COLABOROU RICARDO CHAPOLA