Arquivo da tag: Animais

Chimpanzés caçadores dão pistas sobre os primeiros humanos (El País)

Primatas que usam lanças podem fornecer indícios sobre origem das sociedades humanas

 12 MAY 2015 – 18:14 BRT

Um velho chimpanzé bebe água em um lago, em Fongoli, no Senegal. / FRANS LANTING

Na quente savana senegalesa se encontra o único grupo de chimpanzés que usa lanças para caçar animais com os quais se alimenta. Um ou outro grupo de chimpanzés foi visto portando ferramentas para a captura de pequenos mamíferos, mas esses, na comunidade de Fongoli, caçam regularmente usando ramos afiados. Esse modo de conseguir alimento é um uso cultural consolidado para esse grupo de chimpanzés.

Além dessa inovação tecnológica, em Fongoli ocorre também uma novidade social que os distingue dos demais chimpanzés estudados na África: há mais tolerância, maior paridade dos sexos na caça e os machos mais corpulentos não passam com tanta frequência por cima dos interesses dos demais, valendo-se de sua força. Para os pesquisadores que vêm observando esse comportamento há uma década esses usos poderiam, além disso, oferecer pistas sobre a evolução dos ancestrais humanos.

“São a única população não humana conhecida que caça vertebrados com ferramentas de forma sistemática, por isso constituem uma fonte importante para a hipótese sobre o comportamento dos primeiros hominídeos, com base na analogia”, explicam os pesquisadores do estudo no qual formularam suas conclusões depois de dez anos observando as caçadas de Fongoli. Esse grupo, liderado pela antropóloga Jill Pruetz, considera que esses animais são um bom exemplo do que pode ser a origem dos primeiros primatas eretos sobre duas patas.

Os machos mais fortes dessa comunidade respeitam as fêmeas na caça

Na sociedade Fongoli as fêmeas realizam exatamente a metade das caçadas com lança. Graças à inovação tecnológica que representa a conversão de galhos em pequenas lanças com as quais se ajudam para caçar galagos – pequenos macacos muito comuns nesse entorno –, as fêmeas conseguem certa independência alimentar. Na comunidade de Gombe, que durante muitos anos foi estudada por Jane Goodall, os machos arcam com cerca de 90% do total das presas; em Fongoli, somente 70%. Além disso, em outros grupos de chimpanzés os machos mais fortes roubam uma de cada quatro presas caçadas pelas fêmeas (sem ferramentas): em Fongoli, apenas 5%.

Uma fêmea de chimpanzé apanha e examina um galho que usará para capturar sua presa. / J. PRUETZ

“Em Fongoli, quando uma fêmea ou um macho de baixo escalão captura uma presa, permitem que ele fique com ela e a coma. Em outros lugares, o macho alfa ou outro macho dominante costuma tomar-lhe a presa. Assim, as fêmeas obtêm pouco benefício da caça, se outro chimpanzé lhe tira sua presa”, afirma Pruetz. Ou seja, o respeito dos machos de Fongoli pelas presas obtidas por suas companheiras serviria de incentivo para que elas se decidam a ir à caça com mais frequência do que as de outras comunidades. Durante esses anos de observação, praticamente todos os chimpanzés do grupo – cerca de 30 indivíduos – caçaram com ferramentas,

O clima seco faz com que os macacos mais acessíveis em Fongoli sejam os pequenos galagos, e não os colobos vermelhos – os preferidos dos chimpanzés em outros lugares da África –, que são maiores e difíceis de capturar por outros que não sejam os machos mais rápidos e corpulentos. Quase todos os episódios de caça com lanças observados (três centenas) se deram nos meses úmidos, nos quais outras fontes de alimento são escassas.

A savana senegalesa, com poucas árvores, é um ecossistema que tem uma importante semelhança com o cenário em que evoluíram os ancestrais humanos. Ao contrário de outras comunidades africanas, os chimpanzés de Fongoli passam a maior parte do tempo no chão, e não entre os galhos. A excepcional forma de caça de Fongoli leva os pesquisadores a sugerir em seu estudo que os primeiros hominídeos provavelmente intensificaram o uso de ferramentas tecnológicas para superar as pressões ambientais, e que eram até mesmo “suficientemente sofisticados a ponto de aperfeiçoar ferramentas de caça”.

“Sabemos que o entorno tem um impacto importante no comportamento dos chimpanzés”, afirma o primatólogo Joseph Call, do Instituto Max Planck. “A distribuição das árvores determina o tipo de caça: onde a vegetação é mais frondosa, a caçada é mais cooperativa em relação a outros entornos nos quais é mais fácil seguir a presa, e eles são mais individualistas”, assinala Call.

No entanto, Call põe em dúvida que essas práticas de Fongoli possam ser consideradas caçadas com lança propriamente ditas, já que para ele lembram mais a captura de formigas e cupins usando palitos, algo mais comum entre os primatas. “A definição de caça que os pesquisadores estabelecem em seu estudo não se distingue muito do que fazem colocando um raminho em um orifício para conseguir insetos para comer”, diz Call. Os chimpanzés de Fongoli cutucam com paus os galagos quando eles se escondem em cavidades das árvores para forçá-los a sair e, uma vez fora, lhes arrancam a cabeça com uma mordida. “É algo que fica entre uma coisa e a outra”, argumenta.

Esses antropólogos acreditam que o achado permite pensar que os primeiros hominídeos eretos também usavam lanças

Pruetz responde a esse tipo de crítica dizendo que se trata de uma estratégia para evitar que o macaco os morda ou escape, uma situação muito diferente daquela de colocar um galho em um orifício para capturar bichos. Se for o mesmo, argumentam Pruetz e seus colegas, a pergunta é “por que os chimpanzés de outros grupos não caçam mais”.

Além do caso particular, nem sequer está encerrado o debate sobre se os chimpanzés devem ser considerados modelos do que foram os ancestrais humanos. “Temos de levar em conta que o bonobo não faz nada disso e é tão próximo de nós como o chimpanzé”, defende Call. “Pegamos o chimpanzé por que nos cai bem para assinalar determinadas influências comuns. É preciso ter muito cuidado e não pesquisar a espécie dependendo do que queiramos encontrar”, propõe.

Confessions of a Shark Anthropologist (Anthropology News)

Anthropology and Environment Society

April 22, 2015

Patrick Nason

Earlier this year I received a phone call from an unknown number. “This is the National Geographic Channel. Is it true that you are a shark anthropologist?” I paused— “Yes, I guess you can say that.” “Great, we are doing a program about sharks and are asking experts why sharks attack at certain times and in certain places more than others. Can you tell me a bit about your work?”

My interest in sharks began in 2005 during an internship at a resort in Papua New Guinea. Ten miles from shore and ninety feet below the surface, a twelve-foot hammerhead shark swam straight at me, stopping only three feet away before turning to rejoin its group. As it moved gracefully into the deep, I caught my breath and returned to the surface.

Four years later, I was working on a dive boat in South Florida when a sport-fishing boat motored past with a large grey hammerhead hung from its rigging. For a brief moment, I thought it was the shark I encountered years before. And why couldn’t it be? Like whales, most species of sharks are highly migratory. They have little respect for exclusive economic zones, marine protected areas, or any other enclosures. What might appear as absolute freedom in these animals has led to the production of an abstract image of sharks as transgressive predators, menaces to society, and worthy targets of sport. Regardless of what the category of the shark has become, the individual animal hanging from that fishing boat was certainly dead—no longer a terrible monster.

Sharks Arranged for Sale at Fish Market, Indonesia (Photo credit: Patrick Nason)
Sharks Arranged for Sale at Fish Market, Indonesia (Photo credit: Patrick Nason)

This incident took place in 2009, just after Rob Stewart’s film Sharkwater revealed the decimation of global shark populations by the finning industry. Considering the importance of sharks to healthy marine ecosystems, surely it was wrong to continue killing them for sport. Thinking I might do some good, I spoke with the captain of the boat about their catch.

“Couldn’t you release them from now on?” I asked.

“They normally die during the fight.”

“Well, what about fishing for something else?”

“Sailfish and marlin are not in season,” he said. “And besides, the clients are paying for the experience, and they want their photo taken with the big sharks.”

“Yes but hammerhead populations are in serious decline.” I said.

“We catch plenty of them, and easily too. More this year than last.”

I was stuck. How could I prove something was threatened when local knowledge suggests otherwise? Even worse, how could anyone prove sharks were in decline when, as free-roaming marine animals, they cannot be easily counted?

That same year, National Geographic aired a documentary entitled Drain the OceanThe promotional abstract read: “In this special, we look at what most call ‘The Final Frontier.’ Using the newest data from scientists all over the world and the latest advancements in computer generated imaging, we are able to explore some of the most dramatic landscapes the Earth has to offer.” This was exactly what my argument lacked—quantitative support through technological innovation. If computers could reveal the geological truths of this invisible realm, perhaps they could also reveal the ecological truths of a planet in decline—dolphins tangled in drift nets, massive whales with harpoons rusting in their backs, and dwindling populations of sharks swishing their tales through the muddy terrain. If this could be done, then maybe I could convince the fisherman that killing sharks for money was wrong.

But draining the ocean is not yet possible, nor should it be. Even if through some technological means we could illuminate the other seventy percent of our planet, the lives and the forms of relationality between humans and marine animals (however contentious they may be) would change at the moment of discovery. In trying to protect sharks, neither scientific nor emotional appeals alone are sufficient to effect social change. There remains a mystery of what oceanic animals do, how they do it, and exactly how many are required to keep doing what they do. If this mystery were completely resolved, the result would be equally harmful to marine life and to those who make their living upon the sea; for this unknown marks the distinction between our terrestrial selves and aquatic others, and is therefore what makes knowledge of the ocean (and thus ourselves) possible.

 An Anthropology of the Ocean

My phone call with National Geographic didn’t last long. The producer ended it by saying, “Your work sounds interesting, but we are looking for more evidence about why these attacks are occurring. Could you recommend a good marine biologist?” I did, and promptly hung up. I thought about our conversation—I don’t even know what a shark anthropologist is, and I’m supposed to be one! 

As human interests are directed into the sea in the form of extractive industry, state securitization, renewable energy, and conservation enclosure, we find ourselves as a species grappling with the politics and hermeneutics of the life aquatic. Responding to this with continued interest in the protection of marine life and forms of relationality, I have begun to sketch an Anthropology of the OceanWorking alongside indigenous fishing communities, ecologists, oceanographers, and drawing on the work of fellow anthropologists like Stefan Helmreich, such an approach examines how oceanic spaces and bodies are imagined, explored, and controlled, and how rights to marine resources are established and translated across social, spatial, and categorical boundaries

Within this framework, an Anthropology of Sharks could do the following: 1) draw upon the history of anthropological theory and method to ask how valuable spaces become ‘final frontiers,’ 2) describe how these produced frontiers are explored, claimed, enclosed—in short, how they are settled, and 3) reveal the forms of dispossession and disenchantment that occur when such settlement attempts to cultivate spaces have already been occupied by other ways of being and knowing. Putting a multispecies twist on subaltern studies and postcolonial anthropology, this approach would not only ask if the shark could “speak,” but if and how it might be heard amid the cacophony of other voices.

Patrick Nason is a doctoral student in the Department of Anthropology at Columbia University, and a blogger at the Shark Research Institute.

Puppy-Dog Eyes of Science (Savage Minds)

April 24, 2015 – John Hartigan

“Scientists say…” It’s interesting what natural science research starts making the rounds on social media. Mostly on diet or health broadly, and increasingly concerning climate change. On rare occasion—as over the past few days—some reports surface that offer insight into the circulating clutter itself, as in “cute dog” photos. In this instance, they’re opportunities to glimpse changing understandings of big topics, like domestication and evolution.

Links for two articles recently popped up in my Twitter feed: “The Science of Puppy-Dog Eyes” (NYTimes, 4/21/14) and “The Guilty Looking Companion,” Scientific American(4/20/15), both treating the gazing behavior of dogs and its various effects on humans. The first, by Jan Hoffman, reported on a study published in Science (in a themed-column on evolution), titled, “Dogs hijack the human bonding pathway.” The second, by Julie Hecht, “The Guilty Looking Companion,” builds off an article in Behavioral Processes, on a tangled question: “Are owners’ reports of their dogs’ ‘guilty look’ influenced by the dogs’ action and evidence of the misdeed?” Both suggest a far more agential companion species than many people might’ve suspected, but more importantly they each complicate stock domestication narratives suggesting it was something we simply did to them. They also suggest opportunities for extending social analysis beyond the human.

As the title of the Science article suggests, dogs were possibly canny drivers of domestication: “dogs became domesticated in part by adapting to human means of communication: eye contact.” In particular, the speculation is that dogs cleverly “utilized a natural system meant for bonding a parent with his or her child.” Evolutionarily, “the challenge for dogs may simply have been to express a behavioral (and morphological) repertoire that mimicked the cues that elicit caregiving toward our own young. Indeed, these juvenile characteristics of dogs are known to carry a selective advantage with respect to human preferences.” So dogs wile their way into our good graces by coopting the cuteness channel we have for children. To complicate agency a bit further, this seems to all hinge on a bidirectional hormonal mechanism: people and dogs both develop heightened, pleasurable levels of oxytocin from protracted gazing into each other’s eyes. “These findings suggest not only an interspecific effect of oxytocin, but also the exciting possibility of a feedback loop,” since “shifts in oxytocin concentration in a dog might elicit similar changes in a human and vice-versa—just as when a mother bonds with her infant.” Domestication just got a good deal more interesting.

“The guilty looking companion” takes up the theme of sociality and how social bonds are respectively maintained in various species, but also how humans might be duped by our tendency to anthropomorphize dogs as possessing a subjective state approximating shame. The reparative behaviors of appeasement and reconciliation that maintain relationships, practiced by many species, when manifested by dogs, reads easily, to us, as “guilt.” But through a fascinating series of experiments, researchers countered that these canine gestures are just “cohesive displays,” which operate “to reduce conflict, diffuse tension, and reinforce social bonds.” Dogs are not responding to ameliorating a subjective sense of shame at transgressing rules; they are instead “incredibly sensitive to environmental and social cues.” If there’s furniture torn or overturned, the owner is looking for someone to chastise—better grovel or cringe. These behavior are very effective, according to surveys of dog owners, who withhold punishments in the wake of such displays. But Hecht concludes with a caution: “It might just be that we’re anthropomorphizing,” in reference to the viral spew of “dog shamming” photos. “Which, in this case, might not be good for us or our dogs.” Indeed, but what is even more valuable here is the perspective opened up onto thinking about parallel and converging forms of species sociality, beyond the question of who is domesticating who.

On that topic, another recently published science article pursues just these openings, though unfortunately it does not seem to be circulating widely at all. “Testing the myth: Tolerant dogs and aggressive wolves,” in Proceedings B (Royal Society Publishing) reports on findings that indicate “a steeper dominance hierarchy in dogs than in wolves.” While “tolerance” is supposed to be the character trait “selected for,” dogs appear far more aggressive and uncooperative with conspecifics than wolves. The problem with “all domestication theories” to date is that they’ve ignored “apparently contradictory behaviours…observed in dogs and wolf packs.” There’s an enormous amount to this piece, but it may come down to “face,” as Erving Goffman developed the concept. “Visual communication in dogs is somewhat impaired due to their reduced visual (facial as well as bodily) expressions,” which “might lead to an inability to control conflicts in close quarters.” Wolves are far more articulate in reading both gaze and facial features in conspecific communications. Range et al write, “Although dogs and wolves seem to use the same signals overall, it is possible that dogs do not use them as appropriately as wolves”—i.e., they haven’t refined the etiquette of conspecific communications quite as well, though they’re very good at circumventing our conspecific gaze signaling tendencies.

But that “wolves appear tolerant, attentive, and at the same time cooperative towards pack members” is in stark “contrast to the starting point of several recent domestication hypotheses.” Free-ranging dogs—constituting about 76-83% of the global dog population!!—not so much. So the questions swirl as to dogs’ cognitive and emotional processes underlying their intraspecific sociality and how that variously aligns with ours, in the deep past and today.

Alteração comportamental de animais sinaliza, dias antes, a ocorrência de terremotos (Pesquisa Fapesp)

27 de abril de 2015

Estudo realizado no Parque Nacional Yanachaga, no Peru, correlacionou mudanças de comportamento de aves e pequenos mamíferos com a ionização da atmosfera causada pelo atrito subterrâneo das rochas (roedor paca [Cuniculus paca] filmado por uma camera tipo ‘motion-triggered’ / foto TEAM Network; teamnetwork.org)

José Tadeu Arantes | Agência FAPESP – O dado de que alterações no comportamento dos animais sinalizam, com horas ou dias de antecedência, eventos como os terremotos já era conhecido. Especialmente noticiada foi a disparada dos elefantes asiáticos para terras altas por ocasião do terremoto seguido de tsunami de 26 de dezembro de 2004. Muitas vidas humanas foram salvas graças a isso. Mas tais eventos ainda não haviam sido documentados de maneira rigorosa e conclusiva. Nem fora estabelecida uma correlação de causa e efeito entre essa modificação do comportamento animal e fenômenos físicos mensuráveis.

Isso ocorreu agora em pesquisa realizada por Rachel Grant, da Anglia Ruskin University (Reino Unido), Friedemann Freund, da agência espacial Nasa (Estados Unidos), e Jean-Pierre Raulin, do Centro de Radioastronomia e Astrofísica Mackenzie (Brasil). Artigo relatando o estudo, “Changes in Animal Activity Prior to a Major (M=7) Earthquake in the Peruvian Andes”, foi publicado na revista Physics and Chemistry of the Earth.

O físico Jean-Pierre Raulin, professor da Universidade Presbiteriana Mackenzie, participou do estudo no contexto do projeto de pesquisa “Monitoramento da atividade solar e da Anomalia Magnética do Atlântico Sul (AMAS) utilizando uma rede de receptores de ondas de muita baixa frequência (VLF) – SAVNET – South América VLF network”, apoiado pela FAPESP.

“Nosso estudo correlacionou alterações no comportamento de aves e pequenos mamíferos do Parque Nacional Yanachaga, no Peru, com distúrbios na ionosfera terrestre, ambos os fenômenos verificados vários dias antes do terremoto Contamana, de 7,0 graus de magnitude na escala Richter, que ocorreu nos Andes peruanos em 2011”, disse Raulin à Agência FAPESP.

Os animais foram monitorados por um conjunto de câmeras. “Para não interferir em seu comportamento, essas câmeras eram acionadas de forma automática no momento em que o animal passava na sua frente, registrando a passagem por meio de flash de luz infravermelha”, detalhou o pesquisador. Em um dia comum, cada animal era avistado de cinco a 15 vezes. Porém, no intervalo de 23 dias que antecedeu o terremoto, o número de avistamentos por animal caiu para cinco ou menos. E, em cinco dos sete dias imediatamente anteriores ao evento sísmico, nenhum movimento de animal foi registrado.

Nessa mesma época, por meio do monitoramento das propriedades de propagação de ondas de rádio de muito baixa frequência (VLF), os pesquisadores detectaram, duas semanas antes do terremoto, perturbações na ionosfera sobre a área ao redor do epicentro. Um distúrbio especialmente grande da ionosfera foi registrado oito dias antes do terremoto, coincidindo com o segundo decréscimo no avistamento dos animais.

Os pesquisadores propuseram uma explicação capaz de correlacionar os dois fenômenos. Segundo eles, a formação maciça de íons positivos, devido à fricção subterrânea das rochas durante o período anterior ao terremoto, teria provocado tanto as perturbações medidas na ionosfera quanto a alteração comportamental dos animais. A fricção é resultado da subducção ou deslizamento da placa tectônica de Nazca sob a placa tectônica continental.

É sabido que a maior concentração de íons positivos na atmosfera provoca, seja em animais, seja em humanos, um aumento dos níveis de serotonina na corrente sanguínea. Isso leva à chamada “síndrome da serotonina”, caracterizada por maior agitação, hiperatividade e confusão. O fenômeno é semelhante à inquietação, facilmente perceptível em humanos, que ocorre antes das tempestades, quando a concentração de elétrons nas bases das nuvens também provoca um acúmulo de íons positivos na camada da atmosfera próxima ao solo, gerando um intenso campo elétrico no espaço intermediário.

“No caso dos terremotos, cargas positivas formadas no subsolo devido ao estresse das rochas migram rapidamente para a superfície, resultando na ionização maciça de moléculas do ar. Em algumas horas, os íons positivos assim formados alcançam a base da ionosfera, localizada cerca de 70 quilômetros acima do solo. Esse aporte maciço de íons teria provocado as flutuações da densidade eletrônica na baixa ionosfera que detectamos. Por outro lado, durante o trânsito subterrâneo das cargas positivas, devido a uma espécie de ‘efeito de ponta’, a ionização tende a se acumular perto das elevações topográficas locais – exatamente onde estavam localizadas as câmeras. Nossa hipótese foi que, para se livrar dos sintomas indesejáveis da síndrome da serotonina, os animais fugiram para áreas mais baixas, onde a ionização não é tão expressiva”, explicou Raulin.

“Acreditamos que ambas as anomalias surgiram a partir de uma única causa: a atividade sísmica causando estresse na crosta terrestre e levando, entre outras coisas, à enorme ionização na interface solo-ar. Esperamos que nosso trabalho possa estimular ainda mais a investigação na área, que tem o potencial de auxiliar as previsões de curto prazo de riscos sísmicos”, declarou Rachel Grant, principal autora do artigo.

Independentemente da observação do comportamento animal, os resultados obtidos mostram que a previsão de terremotos poderia ser feita também mediante a detecção da ionização do ar, com o monitoramento do campo elétrico atmosférico. “Já temos detectores instalados no Brasil, no Peru e na Argentina. E pretendemos, em breve, instalar sensores de campo elétrico atmosférico nos lugares propícios a atividades sísmicas importantes. Isso daria uma previsibilidade da ordem de duas semanas ou até mais. Por ocasião do terremoto do Haiti, em janeiro de 2010, a rede SAVNET já tinha detectado flutuações na ionosfera com 12 dias de antecedência, com resultados publicados na revista NHESS – Natural Hazards and Earth System Sciences”, afirmou Raulin.

Onças recebem colar com transmissor e são monitoradas pelo Instituto Mamirauá (MCTI/Instituto Mamirauá)

Em 2015, três onças-pintadas foram capturadas pelos pesquisadores na Reserva Mamirauá, no Amazonas, e têm sua movimentação acompanhada. Os exemplares são apelidados de Pérola, Baden e Caçulão

Iniciado o ciclo da cheia, com o aumento do nível da água, na Reserva Mamirauá, no Amazonas, os pesquisadores do Instituto Mamirauá vão a campo para a campanha de captura de onças-pintadas, realizada nos meses de dezembro, janeiro e março. Em 2015, três animais foram capturados e são agora monitorados pelos pesquisadores. Os três exemplares, apelidados de Pérola, Baden e Caçulão, são adultos: uma fêmea preta (melânica) e dois machos.

A recaptura de Baden, que já havia sido capturado e monitorado durante o ano de 2014, permite aos pesquisadores acompanharem seu comportamento por um período mais longo, gerando mais informações para o estudo. De acordo com o pesquisador Emiliano Esterci Ramalho, líder do Grupo de Pesquisa em Ecologia e Conservação de Felinos na Amazônia, desde a primeira captura, em 2008, todos os animais observados possuem bom estado de saúde.

O principal objetivo do estudo é entender a ecologia da onça-pintada nas florestas inundáveis da Amazônia, buscando conhecer como as onças se movimentam e como a alteração do ambiente pelo fluxo das águas (enchente, cheia, vazante e seca) influencia seu comportamento. As capturas também permitem aos pesquisadores avaliar o estado de saúde dos espécimes e detectar quais patógenos e parasitas estão presentes na população de onças da região.

O pesquisador citou um fato inusitado observado pelo monitoramento desse ano. “O Caçulão, que é um macho bem ousado, andou e deitou em baixo das casas de uma das comunidades da Reserva Mamirauá, comeu cachorros, galinhas e um pato no período em que estávamos na região. E vimos uma interação bem interessante dele com outro macho. Marcamos o ponto em que o outro estava e, no dia seguinte, o Caçulão esteve no mesmo local”, contou.

Leia mais.

(MCTI, via Instituto Mamirauá)

http://www.mcti.gov.br/noticias/-/asset_publisher/IqV53KMvD5rY/content/oncas-recebem-colar-com-transmissor-e-sao-monitoradas-pelo-instituto-mamiraua

Galinhas enxergam as cores bem melhor do que os humanos (Folha de S.Paulo)

RICARDO MIOTO

EDITOR DE “CIÊNCIA” E “SAÚDE”

30/03/2015  02h00

Galinhas são animais de visão, diz a ciência. Perto delas, somos uns daltônicos.

Cientistas descobriram que suas retinas têm cinco cones sensíveis à cor. Humanos têm só três, que enxergam comprimentos de vermelho, azul e verde –o resto é mistura. Galinhas nos superam com um cone para violeta e alguns comprimentos ultravioleta e com um quinto receptor, ainda pouco compreendido.

Tatiane Rosa/Folhapress
Galinha da Faculdade de Medicina Veterinária e Zootecnia da USP, no campus de Pirassununga
Galinha da Faculdade de Medicina Veterinária e Zootecnia da USP, no campus de Pirassununga

Além disso, no ano passado cientistas de Princeton (EUA) mostraram que os átomos do olho da galinha se organizam num estado da matéria inédito na biologia, com propriedades tanto de cristal sólido quanto de líquido. Tal arranjo permite que cores sejam recebidas de forma muito nítida.

Foi assim que o olho da galinha foi parar na revista científica “Physical Review”, entre artigos sobre temas da física como dissipação de energia ou mecânica quântica.

Isso tudo faz com que seja difícil imaginarmos como uma galinha vê cores –só sabemos que é bem mais intenso e, digamos, psicodélico.

Por que a evolução deixou o olho da galinha assim? É uma boa pergunta. As respostas passam pela importância das cores para ela –pense, por exemplo, na plumagem colorida dos parceiros sexuais.

Chimps joining new troop learn its ‘words’: study (Reuters)

BY SHARON BEGLEY

NEW YORK, Thu Feb 5, 2015 1:03pm EST

(Reuters) – Just as Bostonians moving to Tokyo ditch “grapefruit” and adopt “pamplemousse,” so chimps joining a new troop change their calls to match those of their new troop, scientists reported on Thursday in the journal Current Biology.

The discovery represents the first evidence that animals besides humans can replace the vocal sounds their native group uses for specific objects – in the chimps’ case, apples – with those of their new community.

One expert on chimp vocalizations, Bill Hopkins of Yerkes National Primate Research Center in Atlanta, who was not involved in the study, questioned some of its methodology, such as how the scientists elicited and recorded the chimps’ calls, but called it “interesting work.”

Chimps have specific grunts, barks, hoots and other vocalizations for particular foods, for predators and for requests such as “look at me,” which members of their troop understand.

Earlier studies had shown that these primates, humans’ closest living relatives, can learn totally new calls in research settings through intensive training. And a 2012 study led by Yerkes’ Hopkins showed that young chimps are able to pick up sounds meaning “human, pay attention to me,” from their mothers.

But no previous research had shown that chimps can replace a call they had used for years with one used by another troop. Instead, primatologists had thought that sounds referring to objects in the environment were learned at a young age and essentially permanent, with any variations reflecting nuances such as how excited the animal is about, say, a banana.

In the new research, scientists studied adult chimpanzees that in 2010 had been moved from a safari park in the Netherlands to Scotland’s Edinburgh Zoo, to live with nine other adults in a huge new enclosure.

It took three years, and the formation of strong social bonds among the animals, but the grunt that the seven Dutch chimps used for “apple” (a favorite food) changed from a high-pitched eow-eow-eow to the lower-pitched udh-udh-udh used by the six Scots, said co-author Simon Townsend of the University of Zurich. The change was apparent even to non-chimp-speakers (scientists).

“We showed that, through social learning, the chimps could change their vocalizations,” Townsend said in an interview. That suggests human language isn’t unique in using socially-learned sounds to signify objects.

Unanswered is what motivated the Dutch chimps to sound more like the Scots: to be better understood, or to fit in by adopting the reining patois?

(Reporting by Sharon Begley; Editing by Nick Zieminski)

Ebola Is Wiping Out the World’s Gorillas (The Daily Beast)

Finbarr O’Reilly/Reuters

01.22.15

In just four decades, Ebola has wiped out one third of the world’s chimp and gorilla populations. If it continues, the results will be devastating.

While coverage of the current Ebola epidemic in West Africa remains centered on the human populations in Guinea, Sierra Leone, and Liberia, wildlife experts’ concern is mounting over the virus’ favorite victims: great apes.

Guinea, where the epidemic originated, has the largest population of chimpanzees in all of West Africa. Liberia is close behind. Central Africa is home to western lowland gorillas, the largest and most widespread of all four species. Due to forest density, the number of those infected is unknown. But with hundreds of thousands of ape casualties from Ebola, it’s doubtful they’ve escaped unscathed.

Animal activists are ramping up efforts to find an Ebola vaccine for great apes, but with inadequate international support for human research, their mission could be seen as competing with one to save humans. Experts from the Jane Goodall Institute of Canada insist such apprehension would be misplaced. Two streams of funding—one for humans, one for apes—can coexist in this epidemic, they assert, and must.

“The media was really focusing on human beings,” Sophie Muset, project manager for JGI, says. “But it has been traumatic to [the great ape] population for many years.”

Over the course of just four decades, Ebola has wiped out one third of the world’s population of chimpanzees and gorillas, which now stand at less than 300,000 and 95,000 respectively.

The first large-scale “die-offs” due to Ebola began in the late 1990s, and haven’t stopped. Over the course of just four decades, Ebola has wiped out one third of the world’s population of chimpanzees and gorillas, which now stand at less than 300,000 and 95,000 respectively. Both species are now classified as endangered by the International Union for Conservation of Nature; western gorillas are “critically” so.

One of earliest Ebola “die-offs” of great apes came in 1994, when an Ebola outbreak in Minkébé decimated the region’s entire population—once the second largest in the world. In 2002, an outbreak in the Democratic Republic of Congo wiped out 95 percent of the region’s gorilla population. And an equally brutal attack broke out in 2006, when Ebola Zaire in Gabon (the same strain as the current outbreak) left an estimated 5,000 gorillas dead.

The dwindling population of both species, combined with outside poaching threats, means Ebola poses a very real threat to their existence. To evaluate the damage thus far, the Wild Chimpanzee Foundation is conducting population assessments in West Africa, with the goal of getting a rough estimate of how many have died. Given the combined damage that Ebola has inflicted on this population, the results are likely to be troubling.

In a way, great apes are Ebola’s perfect victims. Acutely tactile mammals, their dynamic social environments revolve around intimacy with each other. Touching hands, scratching backs, hugging, kissing, and tickling, they are near constantly intertwined—giving Ebola a free ride.

In a May 2007 study from The American Naturalist, researchers studying the interactions between chimpanzees and gorillas found evidence the Ebola can even spread between the social groups. At three different sites in northern Republic of Congo, they found bacteria from gorillas and chimps on the same fruit trees. For a virus that spreads through bodily fluids, this is an ideal scenario.

“They live in groups [and] they are very close,” says Muset, who has worked with chimps on the ground in Uganda and the DRC. “Since Ebola transmission happens through body fluids, it spreads very fast.”

For gorillas in particular, this culture proves deadly, making their mortality rate for this virus closer to  95 percent. But like humans, the corpses of chimpanzees and gorillas remain contagious with Ebola for days. While the chimps and gorillas infected with Ebola will likely die in a matter of days, the virus can live on in their corpse for days—in turn, spreading to humans who eat or touch their meat.

It is one such interaction that could result in the spread from apes to humans. But in this particular outbreak, experts have zeroed in on the fruit bat (believed to be the original carrier) as the source. The index patient, a 2-year-old in Guinea, was reportedly playing on a tree with a fruit bat colony.

Whether or not a great ape was involved in the transmission of the virus to humans during this outbreak is unknown. Such an interaction is possible. Interestingly, however, it’s not the risk that great apes with Ebola pose to humans that wildlife experts find most concerning. It’s the risk that their absence poses to the wild.

Owing to a diet consisting mostly of fruit, honey, and leaves, gorillas and chimpanzees are crucial to forest life. Inadvertently distributing seeds and pollen throughout the forest, they stimulate biodiversity within it. Without them, the biodiversity of the vegetation may plummet, endangering all of the species that relied on it—and, in turn, the people that relied on them.

“They are not the only ones who act as seed dispersers,” says Muset. “But they are the big players in that field. So when [a die-off] happens, it can decimate an entire forest.”

Wildlife experts worldwide are working to raise both awareness and funds for a vaccination process. It’s a battle that she says was gaining speed last January, when a researcher announced that he had found a vaccine that could work in chimps But as the epidemic in West Africa grew, the focus shifted.

But Muset says its time to return to the project. “There is a vaccine, but it has never been tested on chimpanzees,” she says.  “Progress has been made, and preliminary testing done, but testing in the field need to happen to make it real.”

As to the question of whether it’s ethical to be searching for a vaccine for wild animals when humans are still suffering as well, Muset is honest. “For sure there is a direct competition here. But wildlife and humans have a lot of diseases in common that they can transmit from one to the other,” she says. “And I think you can think of it as two streams of funding, one to wildlife and the other to human beings.”

While it’s great apes that wildlife experts are seeking to save, human nature as a whole, Muset argues, is at stake. “If you want a healthy ecosystem, the more you have to invest in health for wildlife and humans,” she says. “Then, the better place it will be.  Because really, it all works together.”

CNPq cria Rede para otimizar produção de animais em laboratórios (JC)

Rebiotério prevê estimular produção e assegurar qualidade nos biotérios

Ao mesmo tempo em que corre para desenvolver métodos alternativos a fim de reduzir o número de animais em testes de laboratórios –  pela chamada Rede Nacional de Métodos Alternativos (RENAMA) – o governo decidiu criar uma Rede para adequar a produção em biotérios de todos os animais para propósitos científicos e didáticos, como ratos, camundongos e coelhos.

A intenção é atender de forma adequada e organizada à demanda nacional. O entendimento é de que o uso de animais ainda é imprescindível nos testes in vivo e que hoje existe um desequilíbrio entre a oferta e a procura no País, em razão do aumento considerável da produção científica nacional.

Na  prática, o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), principal agência financiadora de pesquisa experimental do País, criou a chamada Rede Nacional de Biotérios de Produção de Animais para Fins Científicos, Didáticos e Tecnológicos (Rebiotério), informou Marcelo Morales, diretor da área de Ciências Agrárias, Biológicas e da Saúde do CNPq e que comandará a rede, com exclusividade ao Jornal da Ciência.

A Rebiotério, segundo Morales, vai mapear, monitorar,   otimizar e dar suporte à produção de animais utilizados em experimentos científicos e em sala de aula. Todos  os biotérios distribuídos pelo País serão cadastrados na rede. Para Morales, essa é uma tentativa de atender aos anseios da comunidade científica pela pesquisa de qualidade envolvendo animais.

Sem querer estimar o número de animais produzidos hoje em laboratórios, para fins científicos, Morales destaca a atual necessidade da produção qualificada de animais em biotérios de produção para atender a demanda científica. Hoje, segundo disse, pesquisadores aguardam na fila um período de dois a cinco meses para receber animais com qualidade (principalmente os desprovidos de patógenos, Specific Pathogen Free – SPF) e que possam ser utilizados em experimentos científicos.  Atualmente,  a produção com qualidade é vinculada apenas a alguns biotérios que os produzem para atender as próprias necessidades e poucos são aqueles que produzem para outras Instituições.   Além disso, a importação desses animais se torna inviável, diante de barreiras sanitárias e do alto custo de importação.

No caso de roedores, responsáveis por cerca de 70% do total de animais utilizados em pesquisas científicas, Morales afirmou que a necessidade estimada de produção é de 5 milhões/ano desses animais.

Normas e legislações 

Além de propor políticas de fomento para a produção de animais em biotérios qualificados, a Rebiotério prevê, ainda, acompanhar a implementação efetiva de normas e legislações especificas adotadas para uso de animais em experimentos científicos, conjuntamente com o  Conselho Nacional de Controle de Experimentação Animal (Concea). Deverá também estimular a qualidade de produção nos  biotérios e atender aos padrões internacionais de boas práticas de bem-estar animal.

Outra função é assegurar o controle sanitário e genético, averiguando o nível de patógenos, por exemplo, e reforçar os padrões éticos adotados para os animais produzidos em biotérios.

Capacitação profissional

Para garantir a qualidade de produção dos biotérios, a Rebiotério terá o papel, dentre outros, de estimular a capacitação e qualificação de profissionais da área no exterior e no Brasil (bioteristas, veterinários, pesquisadores e etc). Assim, garantir que a produção de animais seja compatível com os padrões internacionais.

“Nossa intenção é fortalecer a produção de animais de experimentação, com ética e qualidade, fazendo com o que o País torne-se referência nessa área no mundo”, disse Morales, também professor associado da Universidade Federal do Rio de Janeiro (UFRJ), ex-coordenador do Conselho Nacional de Controle de Experimentação Animal (Concea) e ex-presidente da Sociedade Brasileira de Biofísica (SBBF).

Para fazer frente a tais desafios, o CNPq aprovou a viabilidade de parcerias internacionais que possam assegurar a produção sustentável e de qualidade nos biotérios. A intenção é ampliar o interesse de empresas internacionais, com expertise em tal área, que hoje já organizam e negociam instalação no Brasil.

Segundo Morales, a parceria com empresas estrangeiras pode ser por intermédio de transferência de tecnologia relacionada às práticas modernas de bioterismo; e pelo apoio à formação de pesquisadores e técnicos brasileiros dessa área no exterior.

Sem querer entrar no mérito do orçamento do CNPq, Morales informou que a qualificação desses profissionais pode ocorrer também pelas bolsas do Programa Ciência sem Fronteiras.

Composição da Rebiotério

Além do CNPq, a Rebiotério será composta pela comunidade científica, pela Secretaria de Políticas e Programas de Pesquisa e Desenvolvimento do Ministério da Ciência, Tecnologia e Inovação (Seped/MCTI); e Secretaria de Ciência, Tecnologia e Insumos Estratégicos do Ministério da Saúde (SCTIE), do Ministério da Saúde. Terá ainda participação do Conselho Nacional de Controle de Experimentação Animal (CONCEA), órgão vinculado ao MCTI, e de membros da Finep (Financiadora de Estudos e Projetos).

Da comunidade científica, haverá representantes da Sociedade Brasileira de Ciência em Animais de Laboratórios (SBCAL), da Sociedade Brasileira para o Progresso da Ciência (SBPC), da Academia Brasileira de Ciências (ABC) e do Conselho Nacional das Fundações Estaduais de Amparo à Pesquisa (Confap).

“Nossa intenção é que a rede tenha uma abrangência nacional”, observa Morales.

(Viviane Monteiro/ Jornal da Ciência)

Study of ancient dogs in the Americas yields insights into human, dog migration (Science Daily)

Date: January 7, 2015

Source: University of Illinois at Urbana-Champaign

Summary: A new study suggests that dogs may have first successfully migrated to the Americas only about 10,000 years ago, thousands of years after the first human migrants crossed a land bridge from Siberia to North America.

New evidence suggests dogs arrived in the Americas only about 10,000 years ago. Some believe the ancient dogs looked a lot like present-day dingos. Credit: Angus McNab

A new study suggests that dogs may have first successfully migrated to the Americas only about 10,000 years ago, thousands of years after the first human migrants crossed a land bridge from Siberia to North America.

The study looked at the genetic characteristics of 84 individual dogs from more than a dozen sites in North and South America, and is the largest analysis so far of ancient dogs in the Americas. The findings appear in the Journal of Human Evolution.

Unlike their wild wolf predecessors, ancient dogs learned to tolerate human company and generally benefited from the association: They gained access to new food sources, enjoyed the safety of human encampments and, eventually, traveled the world with their two-legged masters. Dogs also were pressed into service as beasts of burden, and sometimes were served as food, particularly on special occasions.

Their 11,000- to 16,000-year association with humans makes dogs a promising subject for the study of ancient human behavior, including migratory behavior, said University of Illinois graduate student Kelsey Witt, who led the new analysis with anthropology professor Ripan Malhi.

“Dogs are one of the earliest organisms to have migrated with humans to every continent, and I think that says a lot about the relationship dogs have had with humans,” Witt said. “They can be a powerful tool when you’re looking at how human populations have moved around over time.”

Human remains are not always available for study “because living populations who are very connected to their ancestors in some cases may be opposed to the destructive nature of genetic analysis,” Witt said. Analysis of ancient dog remains is often permitted when analysis of human remains is not, she said.

Previous studies of ancient dogs in the Americas focused on the dogs’ mitochondrial DNA, which is easier to obtain from ancient remains than nuclear DNA and, unlike nuclear DNA, is inherited only from the mother. This means mitochondrial DNA offers researchers “an unbroken line of inheritance back to the past,” Witt said.

The new study also focused on mitochondrial DNA, but included a much larger sample of dogs than had been analyzed before.

Molecular anthropologist Brian Kemp of Washington State University provided new DNA samples from ancient dog remains found in Colorado and British Columbia, and the Illinois State Archaeological Survey (ISAS) provided 35 samples from a site in southern Illinois known as Janey B. Goode, near present-day St. Louis. The Janey B. Goode site is located near the ancient city Cahokia, the largest and first known metropolitan area in North America. Occupation of the Janey B. Goode site occurred between 1,400 and 1,000 years ago, the researchers said, while Cahokia was active from about 1,000 to 700 years ago.

Dozens of dogs were ceremonially buried at Janey B. Goode, suggesting that people there had a special reverence for dogs. While most of the dogs were buried individually, some were placed back-to-back in pairs.

In Cahokia, dog remains, sometimes burned, are occasionally found with food debris, suggesting that dogs were present and sometimes were consumed. Dog burials during this time period are uncommon.

As previous studies had done, the Illinois team analyzed genetic signals of diversity and relatedness in a special region (the hypervariable region) of the mitochondrial genome of ancient dogs from the Americas. University of Iowa anthropology professor Andrew Kitchen contributed significantly to this analysis.

The researchers found four never-before-seen genetic signatures in the new samples, suggesting greater ancient dog diversity in the Americas than previously thought. They also found unusually low genetic diversity in some dog populations, suggesting that humans in those regions may have engaged in dog breeding.

In some samples, the team found significant genetic similarities with American wolves, indicating that some of the dogs interbred with or were domesticated anew from American wolves.

But the most surprising finding had to do with the dogs’ arrival in the Americas, Witt said.

“Dog genetic diversity in the Americas may date back to only about 10,000 years ago,” she said.

“This also is about the same time as the oldest dog burial found in the Americas,” Malhi said. “This may not be a coincidence.”

The current study, of only a small part of the mitochondrial genome, likely provides an incomplete picture of ancient dog diversity in the Americas, Malhi said.

“The region of the mitochondrial genome sequenced may mask the true genetic diversity of indigenous dogs in the Americas, resulting in the younger date for dogs when compared with humans,” he said.

More studies of ancient dogs are in the works, the researchers said. Witt has already sequenced the full mitochondrial genomes of 20 ancient dogs, and more are planned to test this possibility, the researchers said.


Journal Reference:

  1. Kelsey E. Witt, Kathleen Judd, Andrew Kitchen, Colin Grier, Timothy A. Kohler, Scott G. Ortman, Brian M. Kemp, Ripan S. Malhi. DNA analysis of ancient dogs of the Americas: Identifying possible founding haplotypes and reconstructing population historiesJournal of Human Evolution, 2014; DOI: 10.1016/j.jhevol.2014.10.012

Carnivorismo (Portal do Meio Ambiente)

PUBLICADO  08 DEZEMBRO 2014

MAURÍCIO ANDRÉS RIBEIRO

01

Por Maurício Andrés Ribeiro

Cadeias alimentares são as transferências de energia alimentar desde os produtores básicos – as plantas –, para os animais herbívoros – consumidores primários –, até os animais carnívoros que se alimentam dos herbívoros ou de outros carnívoros. A cada degrau que se sobe na cadeia trófica, há perdas de energia. As plantas absorvem e metabolizam cerca de 1% da energia solar que sobre elas incidem. Os animais herbívoros aproveitam cerca de 10% da energia contida nos vegetais. Os animais carnívoros ou os seres humanos que se alimentam de carne de animais aproveitam apenas 10% da energia que eles absorveram dos vegetais.

02

O homem está entre as espécies que absorvem energia de vários elos da cadeia alimentar e tem uma diversidade de dietas alimentares, em função do ambiente em que vivem de seus hábitos culturais, de seus valores espirituais ou religiosos. Há seres humanos onívoros, carnívoros, frutívoros, vegetarianos, veganos etc e uma combinação deles. O carnivorismo é o habito sistemático de comer carne e a defesa de tal hábito.O carnivorismo se espalha pelo mundo de modo diferenciado conforme mostra o mapa anexo. Nos países em vermelho se come mais de 30 kg per capita de carne bovina por ano. À medida que aumenta a renda média, tende a aumentar o consumo per capita de carne, o que é ainda estimulado por campanhas de propaganda do carnivorismo nas TVs, nos jornais, em revistas e na internet.

03

A dieta alimentar baseada em proteínas animais, quando comparada a dietas baseadas em grãos, hortaliças e proteína vegetal, tem elevado custo energético e sua produtividade energética é baixa. A demanda por alimentos que se encontram no alto da cadeia alimentar – constituídos pelos produtos de origem animal – consome grande quantidade de terra, água, recursos naturais e defensivos agrícolas; motiva os fazendeiros a expandir as áreas destinadas a pastagens, provoca a destruição de florestas e perdas de solo fértil. Os impactos ambientais de uma dieta carnívora são maiores do que os de uma dieta baseada em produtos vegetais.

No Brasil, pressão sobre as florestas e desmatamento decorrem do plantio de soja para alimentar animais na China ou da pecuária para exportar carne ou abastecer o mercado interno.

04Várias sociedades regularam suas dietas como estratégia para não romper a capacidade de suporte do seu território e reduzir os riscos de colapso. A Índia é uma das mais conhecidas, com o vegetarianismo e a sacralização dos animais. Diamond (2005, p. 356) relata o caso da ilha de Tikopia, no Pacífico Sul, com 4,7km2 e densidade de 309 pessoas por quilômetro quadrado, continuamente habitada há quase três mil anos. Uma das estratégias para garantir a capacidade de sustentação do ambiente foi a mudança de hábitos alimentares, eliminando aqueles que implicam competição pelo uso da terra:

Uma decisão significativa tomada conscientemente por volta de 1.600 d.C, e registrada pela tradição oral, mas também atestada arqueologicamente, foi a matança de todos os porcos da ilha, substituídos como fonte de proteína pelo aumento do consumo de peixe, moluscos e tartarugas.

Tikopia e a India são exemplos de sociedades que superaram o carnivorismo ao constatarem os benefícios sociais que essas mudanças de hábitos alimentares trariam. Aquilo que a Índia estruturou há milênios e o que os ilhéus de Tikopia decidiram há algumas centenas de anos, pode ser uma decisão sábia de ser adotada globalmente no contexto das mudanças climáticas e da atual crise da evolução. Uma das vozes que defende esse caminho é Lovelock (Gaia-Alerta final, pg. 80) que observa

“Nossos líderes, se fossem todos excelentes e poderosos poderiam proibir a manutenção de animais de estimação e gado, tornar compulsória a dieta vegetariana e incentivar um grande programa de síntese de alimentos por indústrias químicas e bioquímicas; fazer isso apenas restringirá a perda de vida a animais de estimação e gado. É alentador que o presidente do IPCC, Dr. Pachauri, tenha recomendado uma dieta vegetariana como um caminho a seguir.”

Atualmente cresce a consciência e os alertas sobre esse tema. O biólogo Erlich (1999, p. 10) afirma que “a capacidade de suporte do planeta seria aumentada se todos se tornassem predominantemente vegetarianos”. O professor E. O. Wilson, de Harvard, em seu livro “O Futuro da vida” expressa as vantagens de renunciar ao consumo de carne: “Se todos aceitassem uma dieta vegetariana, o atual 1,4 bilhão de hectares de terras aráveis seria suficiente para produzir alimentos para 10 bilhões de pessoas.” O vegetarianismo poupa espaço, recursos naturais e o meio ambiente, conseguindo, com baixo uso de recursos naturais, um alto rendimento energético alimentar.

A mudança de dieta alimentar é um processo cultural e encontra resistências em hábitos arraigados. O prazer da mesa é um aspecto sensorial que produz apego e constitui um obstáculo à aceitação de argumentos racionais, como os baseados na ecologia energética, nas perdas de energia que ocorrem nas cadeias alimentares, nos impactos ambientais devastadores associados ao consumo de carnes.

No contexto da crise alimentar, climática, ecológica e hídrica, hábitos alimentares de baixo consumo de proteína animal podem facilitar o acesso da população humana a alimentos e ao mesmo tempo não pressionarem excessivamente a capacidade de suporte do planeta. Superar o carnivorismo é um passo em direção à sustentabilidade no planeta. A mega crise da evolução atual, da qual as mudanças climáticas são um dos aspectos, clama por evolução da consciência humana que induza a mudanças de hábitos tão básicos e elementares como o de se alimentar.

How pace of climate change will challenge ectotherms (Science Daily)

Date: December 9, 2014

Source: University of Sydney

Summary: Scientists have analyzed 40 years of data to outline climate change challenge for ectotherms (animals who rely on external sources of heat to control body temperature). The research showed that many groups of ectotherms, which make up more than 90 percent of all animals, are able to change their physiological function to cope with an altered environment, but the rapid pace and fluctuations of human-induced climate change present serious challenges.

Turtles sunning themselves (stock image). Turtles are ectotherms, one of many that will be threatened by climate change, researchers say. Credit: © xoanon / Fotolia

Animals that regulate their body temperature through the external environment may be resilient to some climate change but not keep pace with rapid change, leading to potentially disastrous outcomes for biodiversity.

A study by the University of Sydney and University of Queensland showed many animals can modify the function of their cells and organs to compensate for changes in the climate and have done so in the past, but the researchers warn that the current rate of climate change will outpace animals’ capacity for compensation (or acclimation).

The research has just been published in Nature Climate Change (Letters), written by Professor Frank Seebacher School of Biological Sciences and Professor Craig Franklin and Associate Professor Craig White from the University of Queensland.

Adapting to climate change will not just require animals to cope with higher temperatures. The predicted increase to fluctuations in temperature as well as to overall temperature would require animals to function across a broader range of conditions. This is particularly important for ectotherms, animals that rely on external sources of heat to control body temperature, and are therefore more influenced by environmental temperatures.

The research showed that many groups of ectotherms, which make up more than 90 percent of all animals, are able to change their physiological function to cope with an altered environment, but the rapid pace and fluctuations of human-induced climate change present serious challenges.

The researchers studied 40 years of published data to assess how biological functions change in response to a sudden fluctuations in environmental temperatures. They found that the physiological rates of ectothermic animals, such as heart rate, metabolism and locomotion, had already increased over the past 20 years with increasing average temperatures.

“It is important that animals maintain the right balance between the large number of physiological functions despite environmental fluctuations. An increase in temperature that leads to changed reaction rates can upset that balance and cause the decline of individuals and species,” said Professor Seebacher. “For example, movement requires energy and oxygen to be delivered to muscles. However, if metabolism or the cardiovascular system can’t cope with increased temperatures, animals can no longer move to forage, migrate or interact with each other.

“The overall trend in the last 20 years has been to increased physiological rates, and we predict that this would continue to increase with increasing temperature. “Even if animals are able to maintain the balance of their physiological functions in a warmer climate, increased metabolism leads to increases in the food resources needed and could upset the balance in ecosystems, particularly if predator and prey populations respond very differently to the environmental temperature change.”


Journal Reference:

  1. Frank Seebacher, Craig R. White, Craig E. Franklin. Physiological plasticity increases resilience of ectothermic animals to climate changeNature Climate Change, 2014; DOI: 10.1038/nclimate2457

Projeto proíbe criação de animais em confinamento (Portal do Meio Ambiente)

PUBLICADO  28 NOVEMBRO 2014. EM ANIMAIS

9753 9753b

A Comissão de Meio Ambiente da Assembleia Legislativa do Estado de São Paulo (ALESP) aprovou o projeto de lei 714/12, de autoria do deputado Feliciano Filho (PEN), que proíbe a criação de animais em sistema de confinamento.

Confinamento é o sistema de criação em que lotes de animais são colocados em piquetes ou locais com área restrita, impossibilitando-os de expressar seu comportamento natural e o pleno atendimento de suas necessidades físicas e mentais. Esse sistema de criação visa acelerar a engorda, aumentando a produtividade e diminuindo os custos do negócio.

“Esse sistema vem se intensificando em nome do ganho de produtividade. Mas ele é perverso com os animais, provocando lesões e estresse. Muitos passam a vida sem ver o sol ou a natureza. Apenas nascem, sofrem e morrem”, explica Feliciano.

Relatório da Humane Society International aponta que “o confinamento intensivo desses sistemas de produção prejudica severamente o bem-estar dos animais, pois são incapazes de se exercitar, de esticar completamente seus membros, ou de se envolver em muitos comportamentos naturais importantes. Como resultado da restrição severa desses sistemas de alojamento monótonos, os animais podem experimentar significativa e prolongadas agressões físicas e psicológicas. Além disso, extensiva evidência científica mostra que os animais confinados intensamente são frustrados, angustiados e sofredores.”

Segundo o texto, “produtividade não é sinônimo de bem-estar, igualar um ao outro não tem respaldo científico. A produtividade é muitas vezes medida em nível de grupo, o que não reflete com exatidão o bem-estar individual.”

No Brasil, as práticas mais comuns de confinamento são as gaiolas em bateria, celas de gestação e gaiolas para bezerros, utilizados, respectivamente, para galinhas poedeiras, porcas prenhes e bezerros criados para vitela.

A União Europeia, através de processos graduais, eliminou tais práticas até 2013. Nos Estados Unidos, os estados do Colorado, Arizona, Flórida, Oregon e Califórnia também têm coibido o confinamento.

Gaiolas em Bateria – As gaiolas em bateria são pequenas enclausuras de arame, que portam de 5 a 10 aves. Cada animal se restringe a um espaço médio de 430 a 550 centímetros quadrados, algo similar a uma folha de papel carta. Dessa forma, ficam impedidas de realizar seus comportamentos naturais, tornando-se inativas, em um chão estéril de gaiola. Tais restrições severas causam, além de estresse, a má condição do pé e distúrbios metabólicos como osteoporose e danos hepáticos.

Celas de Gestação – As porcas reprodutoras passam os quatro meses de prenhez nas chamadas celas de gestação, jaulas individuais com piso de concreto que medem, em geral, 0,6 x 2,1 metros. Pouco maior que o próprio animal, é tão severamente restritiva que a impede até mesmo de se virar. Os riscos desse tipo de confinamento são infecção do trato urinário, ossos enfraquecidos, claudicação e alterações comportamentais.

Gaiolas para bezerros – O confinamento intensivo de bezerros é realizado para a produção de vitela (corte de animal jovem). O animal de raça de leite é criado até 16 a 18 semanas de idade, período em que chegam a pesar cerca de 200 quilos, e destinados à indústria de carne. Somente uma pequena porcentagem é criada até a maturidade e utilizada para reprodução. Os vitelos são mantidos em gaiolas individuais com cerca de 70 centímetros de largura, amarrados na parte da frente da gaiola com uma coleira curta. Ficam com os movimentos restritos e impedidos de se deitar da maneira mais confortável às suas necessidades. A falta de exercícios regulares leva ao comprometimento do desenvolvimento ósseo e muscular, assim como à doenças nas articulações.

Cães e gatos – Em muitos canis e gatis, oficiais e clandestinos, as matrizes são mantidas confinadas em gaiolas, por toda a vida, sem receber luz do Sol e podadas da possibilidade de se mover de acordo com as necessidades anatômicas, fisiológicas, biológicas e etológicas. Muitas desenvolvem transtornos comportamentais irreversíveis.

Penalidades – O projeto de lei determina que o descumprimento das disposições será punido com pagamento de multa de 2.000 UFESP – Unidade Fiscal do Estado de São Paulo por animal (R$ 40.280,00), valor que dobrará em caso de reincidência. Poderá ainda ser realizada a apreensão do animal ou do lote, a suspensão temporária do alvará de funcionamento, assim como sua suspensão definitiva de acordo com a progressão do caso.

O projeto autoriza o Estado a reverter os valores recolhidos para custeio das ações, publicações e conscientização da população sobre guarda responsável e direitos dos animais, para instituições, abrigos ou santuários de animais, ou para programas estaduais de controle populacional ou que visem à proteção e bem-estar dos animais.

Fonte: Proteção Animal.

Gut bacteria from a worm can degrade plastic (Science Daily)

Date: December 3, 2014

Source: American Chemical Society

Summary: Plastic is well-known for sticking around in the environment for years without breaking down, contributing significantly to litter and landfills. But scientists have now discovered that bacteria from the guts of a worm known to munch on food packaging can degrade polyethylene, the most common plastic.The finding could lead to new ways to help get rid of the otherwise persistent waste, the scientists say.

Some bacteria from the guts of waxworms could help us eliminate plastic trash. Credit: ACS

Plastic is well-known for sticking around in the environment for years without breaking down, contributing significantly to litter and landfills. But scientists have now discovered that bacteria from the guts of a worm known to munch on food packaging can degrade polyethylene, the most common plastic. Reported in the ACS journal Environmental Science & Technology, the finding could lead to new ways to help get rid of the otherwise persistent waste, the scientists say.

Jun Yang and colleagues point out that the global plastics industry churns out about 140 million tons of polyethylene every year. Much of it goes into the bags, bottles and boxes that many of us use regularly — and then throw out. Scientists have been trying to figure out for years how to make this plastic trash go away. Some of the most recent studies have tried siccing bacteria on plastic to degrade it, but these required first exposing the plastic to light or heat. Yang’s team wanted to find bacteria that could degrade polyethylene in one step.

The researchers turned to a plastic-eating moth larva, known as a waxworm. They found that at least two strains of the waxworm’s gut microbes could degrade polyethylene without a pretreatment step. They say the results point toward a new, more direct way to biodegrade plastic.

The authors acknowledge funding from the National Natural Science Foundation of China, the National Basic Research Program of China and the Shenzhen Key Laboratory of Bioenergy.

Journal Reference:

  1. Jun Yang, Yu Yang, Wei-Min Wu, Jiao Zhao, Lei Jiang. Evidence of Polyethylene Biodegradation by Bacterial Strains from the Guts of Plastic-Eating WaxwormsEnvironmental Science & Technology, 2014; 48 (23): 13776 DOI: 10.1021/es504038a

Dogs hear our words and how we say them (Science Daily)

Date:

November 26, 2014

Source:

Cell Press

Summary:

When people hear another person talking to them, they respond not only to what is being said — those consonants and vowels strung together into words and sentences — but also to other features of that speech — the emotional tone and the speaker’s gender, for instance. Now, a report provides some of the first evidence of how dogs also differentiate and process those various components of human speech.

141126124340-large

The results from this study support the idea that our canine companions are paying attention “not only to who we are and how we say things, but also to what we say,” authors say. Credit: © Uros Petrovic / Fotolia

When people hear another person talking to them, they respond not only to what is being said–those consonants and vowels strung together into words and sentences–but also to other features of that speech–the emotional tone and the speaker’s gender, for instance. Now, a report in the Cell Press journal Current Biology on November 26 provides some of the first evidence of how dogs also differentiate and process those various components of human speech.

“Although we cannot say how much or in what way dogs understand information in speech from our study, we can say that dogs react to both verbal and speaker-related information and that these components appear to be processed in different areas of the dog’s brain,” says Victoria Ratcliffe of the School of Psychology at the University of Sussex.

Previous studies showed that dogs have hemispheric biases–left brain versus right–when they process the vocalization sounds of other dogs. Ratcliffe and her supervisor David Reby say it was a logical next step to investigate whether dogs show similar biases in response to the information transmitted in human speech. They played speech from either side of the dog so that the sounds entered each of their ears at the same time and with the same amplitude.

“The input from each ear is mainly transmitted to the opposite hemisphere of the brain,” Ratcliffe explains. “If one hemisphere is more specialized in processing certain information in the sound, then that information is perceived as coming from the opposite ear.”

If the dog turned to its left, that showed that the information in the sound being played was heard more prominently by the left ear, suggesting that the right hemisphere is more specialized in processing that kind of information.

The researchers did observe general biases in dogs’ responses to particular aspects of human speech. When presented with familiar spoken commands in which the meaningful components of words were made more obvious, dogs showed a left-hemisphere processing bias, as indicated by turning to the right. When the intonation or speaker-related vocal cues were exaggerated instead, dogs showed a significant right-hemisphere bias.

“This is particularly interesting because our results suggest that the processing of speech components in the dog’s brain is divided between the two hemispheres in a way that is actually very similar to the way it is separated in the human brain,” Reby says.

Of course, it doesn’t mean that dogs actually understand everything that we humans might say or that they have a human-like ability of language–far from it. But, says Ratcliffe, these results support the idea that our canine companions are paying attention “not only to who we are and how we say things, but also to what we say.”

All of this should come as good news to many of us dog-loving humans, as we spend considerable time talking to our respective pups already. They might not always understand you, but they really are listening.

Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.

Journal Reference:

  1. Ratcliffe et al. Orienting asymmetries in dogs’ responses to different communicatory components of human speech. Current Biology, November 2014

Bioengineering study finds two-cell mouse embryos already ‘talking’ about their future (Science Daily)

Date:

November 26, 2014

Source:

University of California – San Diego

Summary:

Bioengineers have discovered that mouse embryos are contemplating their cellular fates in the earliest stages after fertilization when the embryo has only two to four cells, a discovery that could upend the scientific consensus about when embryonic cells begin differentiating into cell types. Their research used single-cell RNA sequencing to look at every gene in the mouse genome.

141126094252-large

The research team used single-cell RNA-sequencing to measure every gene in the mouse genome at multiple stages of development to find differences in gene expression at precise stages. Credit: Art by Victor O. Leshyk provided courtesy of bioeningeering professor Sheng Zhong, UC San Diego Jacobs School of Engineering.

Bioengineers at the University of California, San Diego have discovered that mouse embryos are contemplating their cellular fates in the earliest stages after fertilization when the embryo has only two to four cells, a discovery that could upend the scientific consensus about when embryonic cells begin differentiating into cell types. Their research, which used single-cell RNA sequencing to look at every gene in the mouse genome, was published recently in the journal Genome Research. In addition, this group published a paper on analysis of “time-course”single-cell data which is taken at precise stages of embryonic development in the journal of Proceedings of the National Academy of Sciences.

“Until recently, we haven’t had the technology to look at cells this closely,” said Sheng Zhong, a bioengineering professor at UC San Diego Jacobs School of Engineering, who led the research. “Using single-cell RNA-sequencing, we were able to measure every gene in the mouse genome at multiple stages of development to find differences in gene expression at precise stages.”

The findings reveal cellular activity that could provide insight into where normal developmental processes break down, leading to early miscarriages and birth defects.

The researchers discovered that a handful of genes are clearly signaling to each other at the two-cell and four-cell stage, which happens within days after an egg has been fertilized by sperm and before the embryo has implanted into the uterus. Among the identified genes are several genes belonging to the WNT signaling pathway, well-known for their role in cell-cell communications.

The prevailing view until now has been that mammalian embryos start differentiating into cell types after they have proliferated into large enough numbers to form subgroups. According to the co-authors Fernando Biase and Xiaoyi Cao, when the first cell fate decision is made is an open question. The first major task for an embryo is to decide which cells will begin forming the fetus, and which will form the placenta.

The research was funded by the National Institutes of Health (DP2OD007417) and the March of Dimes Foundation.

Zhong’s research in the field of systems or network biology applies engineering principals to understand how biological systems function. For example, they developed analytical methods to predict personal phenotypes, which refer to the physical description of an individual ranging from eye and hair color to health and disposition, using an individual’s personal genome and epigenome. Epigenome refers to the chemical compounds in DNA that regulate gene expression and vary from person to person. Predicting phenotypes with genome and epigenome is an emerging area of research in the field of personalized medicine that scientists believe could provide new ways to predict and treat genetic disorders.

Story Source:

The above story is based on materials provided by University of California – San Diego. Note: Materials may be edited for content and length.

Journal References:

  1. F. H. Biase, X. Cao, S. Zhong. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Research, 2014; 24 (11): 1787 DOI: 10.1101/gr.177725.114
  2. W. Huang, X. Cao, F. H. Biase, P. Yu, S. Zhong. Time-variant clustering model for understanding cell fate decisions. Proceedings of the National Academy of Sciences, 2014; 111 (44): E4797 DOI: 10.1073/pnas.1407388111

A Magisterial Synthesis Of Apes And Human Evolution (Forbes)

11/23/2014 @ 10:31AM By John Farrell

There are books to read from cover to cover in a week or two, and then there are the ones you dip into over and over again, because they aren’t books so much as encyclopedias.

Russell H. Tuttle’s Apes and Human Evolution is one of these. Like the late Stephen Jay Gould’s magisterial Structure of Evolutionary Theory, Tuttle’s tome is a grand synthesis of all the latest research and data about apes and their relation to us.

Tuttle is Professor of Anthropology, Evolutionary Biology, History of Science and Medicine and the College at the University of Chicago.

Tuttle believes that bipedalism preceded the development of the brain in early humans –and was likely something inherited from smaller apes already used to using their feet to move laterally along branches in trees. Although chimpanzees and bonobos are our closest relatives on the evolutionary tree, they do not represent in their own locomotion good proto-models of what led to human upright posture and walking.

While the book does not need to be read in any particular order, the first two chapters set the stage and the terminology for the rest of Apes and Human Evolution, which consists of five parts, totaling 13 dense chapters. A glossary of terms would have helped, but it’s not too much of a distraction to look up the specialist terms Tuttle introduces in these opening sections.

But lest you think it is intended chiefly for colleagues in the fields of anthropology and evolutionary biology, Tuttle’s style throughout is crisp and often witty. (The chapter on the development of human bipedalism, for example, is called ‘How to Achieve an Erection’.)

Professor Russell H. Tuttle, University of Chicago. Image courtesy of Phys.org.

The opening chapter, ‘Mongrel Models and Seductive Scenarios of Human Evolution’ discusses several hypotheses of human origins, some of which Tuttle argues are biased and which in recent years more detailed study of apes has refuted.

He has a low opinion, for example, of the idea that humans are in essence a species of ‘killer apes’, a notion that gained popularity during the last century. “The views of Charles Darwin,” he writes, “are restrained in comparison with the speculations by the advocates of killer ape scenarios, which flourished for several decades after the horrors of World War I and World War II.”

Darwin portrayed early man (his term) as having “sprung from some comparatively weak creature,” who was not speedy and who lacked natural bodily defenses, namely, formidable canine teeth. Consequently, this bipedal creature was stimulated to use his intellectual powers to make weapons for defense and hunting and to cooperate with “his fellow-men”.

What distinguishes humans among the approximately 400 extant species of primates? In Tuttle’s view, a constellation of morphological and behavioral characteristics, some of which only can be traced precisely through the fossil and archeological records.

Obligate terrestrial bipedalism, precision-gripping hands, reduced teeth and jaws, and ballooned brains can be identified if fossils are complete enough in the skeletal regions under study. Archeological artifacts and features can indicate the presence of tool use and manufacture, control of fire, fabricated shelters, bodily ornamentation, mortuary practice, plastic and graphic arts, and other indications of cognitive skills and culture.

There are also the features that can’t be easily found in fossils or the archeological records, primarily social: cooperation, the ability to enlist new members from outside the immediate community of hominids.

Space does not allow a detailed review of each chapter, summaries of which you can find here. But in the final part, ‘What Makes Us Human?’, Tuttle reveals more of his own philosophical reflections on the matter.

One passage that struck me, for example, occurs in the sub-section, ‘What is More Real: God or Race?’

I believe that God is an ever-increasing collective emergent of the love of all beings past, present and future, but this cannot be proven by available scientific methods of experimentation or controlled comparison. In contrast, the belief in race, in the sense of biological subspecies of Homo Sapiens, lacks a tangible basis; indeed, it has been proven unsupportable genomically, behaviorally, and phenotypically.

Individuals and political groups have manipulated both God and race for nefarious purposes, but actions rooted in the human capacity to affiliate with non-kin, to cooperate, and especially to unite in love and respect for the agency of others has given rise to a variety of constructive social codes that facilitate intragroup and extensive intergroup harmony and mitigate disruptive personal and social behavior.

Whereas scientists possess the means to eliminate belief in human races, they lack the means to eradicate belief in God, and frankly they are probably wasting time and treasure on the exercise.

There’s an optimism here I found somewhat reminiscent of the Jesuit paleontologist Teilhard de Chardin, who had a very goal-oriented view of humanity and its role in cosmic evolution.

I could’t resist asking Tuttle whether Teilhard’s writings had any influence on his own thought as he embarked on his career in the 1960s. This was around the time that Teilhard’s writings were becoming most influential.

“Quite the contrary,” Tuttle replied in an email. “I thought Phenomenon of Man was rubbish. Father Teilhard wanted to be an evolutionary biologist while not giving up God. He did a shoddy job of reconciling deep religious belief with evolutionary biology…for one, he was an orthogenecist [i.e., he believed in progressive, directional evolution, toward a universal goal].”

“I cannot see a reconciliation of the two realms,” Tuttle added. “I believe in the power of love which some or many see as an aspect of God. But I do not think  there is a celestial, etherial being that is interested in us or that makes good or bad things happen.”

Tuttle elaborated on this in a recent review he wrote for the American Journal of Psychology: “As a Christian participant observer into my late teens, followed by two decades attempting to be an atheist, and then participation in the music ministry at a wide variety of churches over the past 30 years, I aver that the bonding of congregations based on love of God and one another are substantive enough to withstand the sarcastic remarks and mockery of professed atheists who command notable space in print media and on the airways.”

Apes and Human Evolution is also available in Kindle Edition. But given the slight difference in price, I recommend getting the print edition.

Humans, baboons share cumulative culture ability (Science Daily)

Date: November 5, 2014

Source: Le Centre national de la recherche scientifique (CNRS)

Summary: The ability to build up knowledge over generations, called cumulative culture, has given humankind language and technology. While it was thought to be limited to humans until now, researchers have recently found that baboons are also capable of cumulative culture.

Baboon using a touch screen. Credit: © 2014 Nicolas Claidière

The ability to build up knowledge over generations, called cumulative culture, has given mankind language and technology. While it was thought to be limited to humans until now, researchers from the Laboratoire de psychologie cognitive (CNRS/AMU), working in collaboration with colleagues at the University of Edinburgh (UK), have recently found that baboons are also capable of cumulative culture. Their findings are published in Proceedings of the Royal Society B on 5 November 2014.

Humankind is capable of great accomplishments, such as sending probes into space and eradicating diseases; these achievements have been made possible because humans learn from their elders and enrich this knowledge over generations. It was previously thought that this cumulative aspect of culture — whereby small changes build up, are transmitted, used and enriched by others — was limited to humans, but it has now been observed in another primate, the baboon.

While it is clear that monkeys like chimpanzees learn many things from their peers, each individual seems to start learning from scratch. In contrast, humans use techniques that evolve and improve from one generation to the next, and also differ from one population to another. The origin of cumulative culture in humans has therefore remained a mystery to scientists, who are trying to identify the necessary conditions for this cultural accumulation.

Nicolas Claidière and Joël Fagot, of the Laboratoire de psychologie cognitive, conducted the present study at the CNRS Primatology Center in Rousset, southeastern France. Baboons live in groups there and have free access to an area with touch screens where they can play a “memory game” specifically designed for the study. The screen briefly displays a grid of 16 squares, four of which are red and the others white. This image is then replaced by a similar grid, but composed of only white squares, and the baboons must touch the four squares that were previously red. Phase one of the experiment started with a task-learning period in which the position of the four red squares was randomized. Phase two comprised a kind of visual form of “Chinese whispers” wherein information was transmitted from one individual to another. In this second phase, a baboon’s response (the squares touched on the screen) was used to generate the next grid pattern that the following baboon had to memorize and reproduce, and so on for 12 “generations.”

The researchers, in collaboration with Simon Kirby and Kenny Smith from the University of Edinburgh, noted that baboons performed better in the phase involving a transmission chain (compared with random testing, which continued throughout the period of the experiment): success rate (1) increased from 80% to over 95%. Due to errors by the baboons, the patterns evolved between the beginning and the end of each chain. Yet to the surprise of researchers, the random computer-generated patterns were gradually replaced by “tetrominos” (Tetris®-like shapes composed of four adjacent squares), even though these forms represent only 6.2% of possible configurations! An even more surprising result was that the baboons’ performance on these rare shapes was poor during random testing, but increased throughout the transmission chain, during which the tetrominos accumulated. Moreover, when the experiment was replicated several times, the starting patterns did not lead to the same set of tetrominos. This study shows that, like humans, baboons have the ability to transmit and accumulate changes over “cultural generations” and that these incremental changes, which may differ depending on the chain, become structured and more efficient.

Researchers have ensured that all the necessary conditions were present to observe a type of cumulative cultural evolution in non-human primates, with its three characteristic properties (progressive increase in performance, emergence of systematic structures, and lineage specificity). These results show that cumulative culture does not require specifically human capacities, such as language. So why have no examples of this type of cultural evolution been clearly identified in the wild? Perhaps because the utilitarian dimension of non-human primate culture (e.g., the development of tools) hinders such evolution.

(1) The task was considered successful if at least 3 out of 4 squares were correctly memorized.


Journal Reference:

  1. N. Claidière, K. Smith, S. Kirby, J. Fagot. Cultural evolution of systematically structured behaviour in a non-human primate. Proceedings of the Royal Society B, November 2014 DOI: 10.1098/rspb.2014.1541

Cockroach cyborgs use microphones to detect, trace sounds (Science Daily)

Date: November 6, 2014

Source: North Carolina State University

Summary: Researchers have developed technology that allows cyborg cockroaches, or biobots, to pick up sounds with small microphones and seek out the source of the sound. The technology is designed to help emergency personnel find and rescue survivors in the aftermath of a disaster.


North Carolina State University researchers have developed technology that allows cyborg cockroaches, or biobots, to pick up sounds with small microphones and seek out the source of the sound. The technology is designed to help emergency personnel find and rescue survivors in the aftermath of a disaster. Credit: Eric Whitmire.

North Carolina State University researchers have developed technology that allows cyborg cockroaches, or biobots, to pick up sounds with small microphones and seek out the source of the sound. The technology is designed to help emergency personnel find and rescue survivors in the aftermath of a disaster.

The researchers have also developed technology that can be used as an “invisible fence” to keep the biobots in the disaster area.

“In a collapsed building, sound is the best way to find survivors,” says Dr. Alper Bozkurt, an assistant professor of electrical and computer engineering at NC State and senior author of two papers on the work.

The biobots are equipped with electronic backpacks that control the cockroach’s movements. Bozkurt’s research team has created two types of customized backpacks using microphones. One type of biobot has a single microphone that can capture relatively high-resolution sound from any direction to be wirelessly transmitted to first responders.

The second type of biobot is equipped with an array of three directional microphones to detect the direction of the sound. The research team has also developed algorithms that analyze the sound from the microphone array to localize the source of the sound and steer the biobot in that direction. The system worked well during laboratory testing. Video of a laboratory test of the microphone array system is available athttp://www.youtube.com/watch?v=oJXEPcv-FMw.

“The goal is to use the biobots with high-resolution microphones to differentiate between sounds that matter — like people calling for help — from sounds that don’t matter — like a leaking pipe,” Bozkurt says. “Once we’ve identified sounds that matter, we can use the biobots equipped with microphone arrays to zero in on where those sounds are coming from.”

A research team led by Dr. Edgar Lobaton has previously shown that biobots can be used to map a disaster area. Funded by National Science Foundation CyberPhysical Systems Program, the long-term goal is for Bozkurt and Lobaton to merge their research efforts to both map disaster areas and pinpoint survivors. The researchers are already working with collaborator Dr. Mihail Sichitiu to develop the next generation of biobot networking and localization technology.

Bozkurt’s team also recently demonstrated technology that creates an invisible fence for keeping biobots in a defined area. This is significant because it can be used to keep biobots at a disaster site, and to keep the biobots within range of each other so that they can be used as a reliable mobile wireless network. This technology could also be used to steer biobots to light sources, so that the miniaturized solar panels on biobot backpacks can be recharged. Video of the invisible fence technology in practice can be seen at http://www.youtube.com/watch?v=mWGAKd7_fAM.

A paper on the microphone sensor research, “Acoustic Sensors for Biobotic Search and Rescue,” was presented Nov. 5 at the IEEE Sensors 2014 conference in Valencia, Spain. Lead author of the paper is Eric Whitmire, a former undergraduate at NC State. The paper was co-authored by Tahmid Latif, a Ph.D. student at NC State, and Bozkurt.

The paper on the invisible fence for biobots, “Towards Fenceless Boundaries for Solar Powered Insect Biobots,” was presented Aug. 28 at the 36th Annual International IEEE EMBS Conference in Chicago, Illinois. Latif was the lead author. Co-authors include Tristan Novak, a graduate student at NC State, Whitmire and Bozkurt.

The research was supported by the National Science Foundation under grant number 1239243.

Building an Ark for the Anthropocene (New York Times)

CreditJason Holley

WE are barreling into the Anthropocene, the sixth mass extinction in the history of the planet. A recent study published in the journal Science concluded that the world’s species are disappearing as much as 1,000 times faster than the rate at which species naturally go extinct. It’s a one-two punch — on top of the ecosystems we’ve broken, extreme weather from a changing climate causes even more damage. By 2100, researchers say, one-third to one-half of all Earth’s species could be wiped out.

As a result, efforts to protect species are ramping up as governments, scientists and nonprofit organizations try to build a modern version of Noah’s Ark. The new ark certainly won’t come in the form of a large boat, or even always a place set aside. Instead it is a patchwork quilt of approaches, including assisted migration, seed banks and new preserves and travel corridors based on where species are likely to migrate as seas rise or food sources die out.

The questions are complex. What species do you save? The ones most at risk? Charismatic animals, such as lions or bears or elephants? The ones most likely to survive? The species that hold the most value for us?

One initiative, the Intergovernmental Platform on Biodiversity and Ecosystem Services formed in 2012 by the governments of 121 countries, aims to protect and restore species in wild areas and to protect species like bees that carry out valuable ecosystem service functions in the places people live. Some three-quarters of the world’s food production depends primarily on bees.

“We still know very little about what could or should be included in the ark and where,” said Walter Jetz, an ecologist at Yale involved with the project. Species are being wiped out even before we know what they are.

Another project, the EDGE of Existence, run by the Zoological Society of London, seeks to protect the most unusual wildlife at highest risk. These are species that evolved on their own for so long that they are very different from other species. Among the species the project has helped to preserve are the tiny bumblebee bat and the golden-rumped elephant shrew.

While the traditional approach to protecting species is to buy land, preservation of the right habitat can be a moving target, since it’s not known how species will respond to a changing climate.

To complete the maps of where life lives, scientists have enlisted the crowd. A crowdsourcing effort called the Global Biodiversity Information Facility identifies and curates biodiversity data — such as photos of species taken with a smartphone — to show their distribution and then makes the information available online. That is especially helpful to researchers in developing countries with limited budgets. Another project, Lifemapper, at the University of Kansas Biodiversity Institute, uses the data to understand where a species might move as its world changes.

“We know that species don’t persist long in fragmented areas and so we try and reconnect those fragments,” said Stuart L. Pimm, a professor of conservation at Duke University, and head of a nonprofit organization called SavingSpecies. One of his group’s projects in the Colombian Andes identified a forest that contains a carnivorous mammal that some have described as a cross between a house cat and a teddy bear, called anolinguito, new to science. Using crowd-sourced data, “we worked with local conservation groups and helped them buy land, reforest the land and reconnect pieces,” Dr. Pimm says.

Coastal areas, especially, are getting scrutiny. Biologists in Florida, which faces a daunting sea level rise, are working on a plan to set aside land farther inland as a reserve for everything from the MacGillivray’s seaside sparrow to the tiny Key deer.

To thwart something called “coastal squeeze,” a network of “migratory greenways” is envisioned so that species can move on their own away from rising seas to new habitat. “But some are basically trapped,” said Reed F. Noss, a professor of conservation biology at the University of Central Florida who is involved in the effort, and they will most likely need to be picked up and moved. The program has languished, but Amendment 1, on the ballot this November, would provide funding.

One species at risk is the Florida panther. Once highly endangered, with just 20 individuals left, this charismatic animal has come back — some. But a quarter or more of its habitat is predicted to be under some three feet of water by 2100. Males will move on their own, but females will need help because they won’t cross the Caloosahatchee River. Experts hope to create reserves north of the river, and think at some point they will have to move females to new quarters.

Protecting land between reserves is vital. The Yellowstone to Yukon Conservation Initiative, known as Y2Y, would protect corridors between wild landscapes in the Rockies from Yellowstone National Park to northern Canada, which would allow species to migrate.

RESEARCHERS have also focused on “refugia,” regions around the world that have remained stable during previous swings of the Earth’s climate — and that might be the best bet for the survival of life this time around.

A section of the Driftless Area encompassing northeastern Iowa and southern Minnesota, also known as Little Switzerland, has ice beneath some of its ridges. The underground refrigerator means the land never gets above 50 or so degrees and has kept the Pleistocene snail, long thought extinct, from disappearing there. Other species might find refuge there as things get hot.

A roughly 250-acre refugia on the Little Cahaba River in Alabama has been called a botanical lost world, because of its wide range of unusual plants, including eight species found nowhere else. Dr. Noss said these kinds of places should be sought out and protected.

Daniel Janzen, a conservation ecologist at the University of Pennsylvania who is working to protect large tracts in Costa Rica, said that to truly protect biodiversity, a place-based approach must be tailored to the country. A reserve needs to be large, to be resilient against a changing climate, and so needs the support of the people who live with the wild place and will want to protect it. “To survive climate change we need to minimize the other assaults, such as illegal logging and contaminating water,” he said. “Each time you add one of those you make it more sensitive to climate change.”

The Svalbard Global Seed Vault, beneath the permafrost on an island in the Arctic Ocean north of mainland Norway, preserves seeds from food crops. Frozen zoos keep the genetic material from extinct and endangered animals. The Archangel Ancient Tree Archive in Michigan, meanwhile, founded by a family of shade tree growers, has made exact genetic duplicates of some of the largest trees on the planet and planted them in “living libraries” elsewhere — should something befall the original.

In 2008, Connie Barlow, a biologist and conservationist, helped move an endangered conifer tree in Florida north by planting seedlings in cooler regions. Now she is working in the West. “I just assisted in the migration of the alligator juniper in New Mexico by planting seeds in Colorado,” she said. “We have to. Climate change is happening so fast and trees are the least capable of moving.”

You’re powered by quantum mechanics. No, really… (The Guardian)

For years biologists have been wary of applying the strange world of quantum mechanics, where particles can be in two places at once or connected over huge distances, to their own field. But it can help to explain some amazing natural phenomena we take for granted

and

The Observer, Sunday 26 October 2014

A European robin in flight

According to quantum biology, the European robin has a ‘sixth sense’ in the form of a protein in its eye sensitive to the orientation of the Earth’s magnetic field, allowing it to ‘see’ which way to migrate. Photograph: Helmut Heintges/ Helmut Heintges/Corbis

Every year, around about this time, thousands of European robins escape the oncoming harsh Scandinavian winter and head south to the warmer Mediterranean coasts. How they find their way unerringly on this 2,000-mile journey is one of the true wonders of the natural world. For unlike many other species of migratory birds, marine animals and even insects, they do not rely on landmarks, ocean currents, the position of the sun or a built-in star map. Instead, they are among a select group of animals that use a remarkable navigation sense – remarkable for two reasons. The first is that they are able to detect tiny variations in the direction of the Earth’s magnetic field – astonishing in itself, given that this magnetic field is 100 times weaker than even that of a measly fridge magnet. The second is that robins seem to be able to “see” the Earth’s magnetic field via a process that even Albert Einstein referred to as “spooky”. The birds’ in-built compass appears to make use of one of the strangest features of quantum mechanics.

Over the past few years, the European robin, and its quantum “sixth sense”, has emerged as the pin-up for a new field of research, one that brings together the wonderfully complex and messy living world and the counterintuitive, ethereal but strangely orderly world of atoms and elementary particles in a collision of disciplines that is as astonishing and unexpected as it is exciting. Welcome to the new science of quantum biology.

Most people have probably heard of quantum mechanics, even if they don’t really know what it is about. Certainly, the idea that it is a baffling and difficult scientific theory understood by just a tiny minority of smart physicists and chemists has become part of popular culture. Quantum mechanics describes a reality on the tiniest scales that is, famously, very weird indeed; a world in which particles can exist in two or more places at once, spread themselves out like ghostly waves, tunnel through impenetrable barriers and even possess instantaneous connections that stretch across vast distances.

But despite this bizarre description of the basic building blocks of the universe, quantum mechanics has been part of all our lives for a century. Its mathematical formulation was completed in the mid-1920s and has given us a remarkably complete account of the world of atoms and their even smaller constituents, the fundamental particles that make up our physical reality. For example, the ability of quantum mechanics to describe the way that electrons arrange themselves within atoms underpins the whole of chemistry, material science and electronics; and is at the very heart of most of the technological advances of the past half-century. Without the success of the equations of quantum mechanics in describing how electrons move through materials such as semiconductors we would not have developed the silicon transistor and, later, the microchip and the modern computer.

However, if quantum mechanics can so beautifully and accurately describe the behaviour of atoms with all their accompanying weirdness, then why aren’t all the objects we see around us, including us – which are after all only made up of these atoms – also able to be in two place at once, pass through impenetrable barriers or communicate instantaneously across space? One obvious difference is that the quantum rules apply to single particles or systems consisting of just a handful of atoms, whereas much larger objects consist of trillions of atoms bound together in mindboggling variety and complexity. Somehow, in ways we are only now beginning to understand, most of the quantum weirdness washes away ever more quickly the bigger the system is, until we end up with the everyday objects that obey the familiar rules of what physicists call the “classical world”. In fact, when we want to detect the delicate quantum effects in everyday-size objects we have to go to extraordinary lengths to do so – freezing them to within a whisker of absolute zero and performing experiments in near-perfect vacuums.

Quantum effects were certainly not expected to play any role inside the warm, wet and messy world of living cells, so most biologists have thus far ignored quantum mechanics completely, preferring their traditional ball-and-stick models of the molecular structures of life. Meanwhile, physicists have been reluctant to venture into the messy and complex world of the living cell; why should they when they can test their theories far more cleanly in the controlled environment of the lab where they at least feel they have a chance of understanding what is going on?

Erwin Schrödinger, whose book What is Life? suggested that the macroscopic order of life was based on order at its quantum level.

Erwin Schrödinger, whose book What is Life? suggested that the macroscopic order of life was based on order at its quantum level. Photograph: Bettmann/CORBIS

Yet, 70 years ago, the Austrian Nobel prize-winning physicist and quantum pioneer, Erwin Schrödinger, suggested in his famous book,What is Life?, that, deep down, some aspects of biology must be based on the rules and orderly world of quantum mechanics. His book inspired a generation of scientists, including the discoverers of the double-helix structure of DNA, Francis Crick and James Watson. Schrödinger proposed that there was something unique about life that distinguishes it from the rest of the non-living world. He suggested that, unlike inanimate matter, living organisms can somehow reach down to the quantum domain and utilise its strange properties in order to operate the extraordinary machinery within living cells.

Schrödinger’s argument was based on the paradoxical fact that the laws of classical physics, such as those of Newtonian mechanics and thermodynamics, are ultimately based on disorder. Consider a balloon. It is filled with trillions of molecules of air all moving entirely randomly, bumping into one another and the inside wall of the balloon. Each molecule is governed by orderly quantum laws, but when you add up the random motions of all the molecules and average them out, their individual quantum behaviour washes out and you are left with the gas laws that predict, for example, that the balloon will expand by a precise amount when heated. This is because heat energy makes the air molecules move a little bit faster, so that they bump into the walls of the balloon with a bit more force, pushing the walls outward a little bit further. Schrödinger called this kind of law “order from disorder” to reflect the fact that this apparent macroscopic regularity depends on random motion at the level of individual particles.

But what about life? Schrödinger pointed out that many of life’s properties, such as heredity, depend of molecules made of comparatively few particles – certainly too few to benefit from the order-from-disorder rules of thermodynamics. But life was clearly orderly. Where did this orderliness come from? Schrödinger suggested that life was based on a novel physical principle whereby its macroscopic order is a reflection of quantum-level order, rather than the molecular disorder that characterises the inanimate world. He called this new principle “order from order”. But was he right?

Up until a decade or so ago, most biologists would have said no. But as 21st-century biology probes the dynamics of ever-smaller systems – even individual atoms and molecules inside living cells – the signs of quantum mechanical behaviour in the building blocks of life are becoming increasingly apparent. Recent research indicates that some of life’s most fundamental processes do indeed depend on weirdness welling up from the quantum undercurrent of reality. Here are a few of the most exciting examples.

Enzymes are the workhorses of life. They speed up chemical reactions so that processes that would otherwise take thousands of years proceed in seconds inside living cells. Life would be impossible without them. But how they accelerate chemical reactions by such enormous factors, often more than a trillion-fold, has been an enigma. Experiments over the past few decades, however, have shown that enzymes make use of a remarkable trick called quantum tunnelling to accelerate biochemical reactions. Essentially, the enzyme encourages electrons and protons to vanish from one position in a biomolecule and instantly rematerialise in another, without passing through the gap in between – a kind of quantum teleportation.

And before you throw your hands up in incredulity, it should be stressed that quantum tunnelling is a very familiar process in the subatomic world and is responsible for such processes as radioactive decay of atoms and even the reason the sun shines (by turning hydrogen into helium through the process of nuclear fusion). Enzymes have made every single biomolecule in your cells and every cell of every living creature on the planet, so they are essential ingredients of life. And they dip into the quantum world to help keep us alive.

Another vital process in biology is of course photosynthesis. Indeed, many would argue that it is the most important biochemical reaction on the planet, responsible for turning light, air, water and a few minerals into grass, trees, grain, apples, forests and, ultimately, the rest of us who eat either the plants or the plant-eaters.

The initiating event is the capture of light energy by a chlorophyll molecule and its conversion into chemical energy that is harnessed to fix carbon dioxide and turn it into plant matter. The process whereby this light energy is transported through the cell has long been a puzzle because it can be so efficient – close to 100% and higher than any artificial energy transport process.

Sunlight shines through chestnut tree leaves. Quantum biology can explain why photosynthesis in plants is so efficient.

Sunlight shines through chestnut tree leaves. Quantum biology can explain why photosynthesis in plants is so efficient. Photograph: Getty Images/Visuals Unlimited

The first step in photosynthesis is the capture of a tiny packet of energy from sunlight that then has to hop through a forest of chlorophyll molecules to makes its way to a structure called the reaction centre where its energy is stored. The problem is understanding how the packet of energy appears to so unerringly find the quickest route through the forest. An ingenious experiment, first carried out in 2007 in Berkley, California, probed what was going on by firing short bursts of laser light at photosynthetic complexes. The research revealed that the energy packet was not hopping haphazardly about, but performing a neat quantum trick. Instead of behaving like a localised particle travelling along a single route, it behaves quantum mechanically, like a spread-out wave, and samples all possible routes at once to find the quickest way.

A third example of quantum trickery in biology – the one we introduced in our opening paragraph – is the mechanism by which birds and other animals make use of the Earth’s magnetic field for navigation. Studies of the European robin suggest that it has an internal chemical compass that utilises an astonishing quantum concept called entanglement, which Einstein dismissed as “spooky action at a distance”. This phenomenon describes how two separated particles can remain instantaneously connected via a weird quantum link. The current best guess is that this takes place inside a protein in the bird’s eye, where quantum entanglement makes a pair of electrons highly sensitive to the angle of orientation of the Earth’s magnetic field, allowing the bird to “see” which way it needs to fly.

All these quantum effects have come as a big surprise to most scientists who believed that the quantum laws only applied in the microscopic world. All delicate quantum behaviour was thought to be washed away very quickly in bigger objects, such as living cells, containing the turbulent motion of trillions of randomly moving particles. So how does life manage its quantum trickery? Recent research suggests that rather than avoiding molecular storms, life embraces them, rather like the captain of a ship who harnesses turbulent gusts and squalls to maintain his ship upright and on course.

Just as Schrödinger predicted, life seems to be balanced on the boundary between the sensible everyday world of the large and the weird and wonderful quantum world, a discovery that is opening up an exciting new field of 21st-century science.

Life on the Edge: The Coming of Age of Quantum Biology by Jim Al-Khalili and Johnjoe McFadden will be published by Bantam Press on 6 November.

Chimpanzees in Uganda forced to steal from maize plantations to survive – video (The Guardian)

Source: PLOS One/Wild Chimpanzees on the Edge: Nocturnal Activities in Croplands

Video

The great apes are facing new challenges to coexist with humans. Their home, the Kibale national park, is increasingly being encroached as agricultural fields keep getting closer to the forest. For chimpanzees inhabiting the patch next to the fields, borders are risky areas. But the animals have devised a way to avoid confrontation with humans – they conduct nocturnal raids. This footage shows chimpanzees taking maize from a plantation inside the park