Arquivo da tag: Filosofia da ciência

Sandra Harding: “Becoming an Accidental Ontologist”

Sandra Harding: “Becoming an Accidental Ontologist: Overcoming Logical Positivism’s Antipathy to Metaphysics.” organized by Global Epistemologies and Ontologies (GEOS) February 11 2021, 17.00 – 18.30 (CET)

Check future seminars here: https://www.geos-project.org/

Inventing the Universe (The New Atlantis)

Winter 2020

David Kordahl

Two new books on quantum theory could not, at first glance, seem more different. The first, Something Deeply Hidden, is by Sean Carroll, a physicist at the California Institute of Technology, who writes, “As far as we currently know, quantum mechanics isn’t just an approximation of the truth; it is the truth.” The second, Einstein’s Unfinished Revolution, is by Lee Smolin of the Perimeter Institute for Theoretical Physics in Ontario, who insists that “the conceptual problems and raging disagreements that have bedeviled quantum mechanics since its inception are unsolved and unsolvable, for the simple reason that the theory is wrong.”

Given this contrast, one might expect Carroll and Smolin to emphasize very different things in their books. Yet the books mirror each other, down to chapters that present the same quantum demonstrations and the same quantum parables. Carroll and Smolin both agree on the facts of quantum theory, and both gesture toward the same historical signposts. Both consider themselves realists, in the tradition of Albert Einstein. They want to finish his work of unifying physical theory, making it offer one coherent description of the entire world, without ad hoc exceptions to cover experimental findings that don’t fit. By the end, both suggest that the completion of this project might force us to abandon the idea of three-dimensional space as a fundamental structure of the universe.

But with Carroll claiming quantum mechanics as literally true and Smolin claiming it as literally false, there must be some underlying disagreement. And of course there is. Traditional quantum theory describes things like electrons as smeary waves whose measurable properties only become definite in the act of measurement. Sean Carroll is a supporter of the “Many Worlds” interpretation of this theory, which claims that the multiple measurement possibilities all simultaneously exist. Some proponents of Many Worlds describe the existence of a “multiverse” that contains many parallel universes, but Carroll prefers to describe a single, radically enlarged universe that contains all the possible outcomes running alongside each other as separate “worlds.” But the trouble, says Lee Smolin, is that in the real world as we observe it, these multiple possibilities never appear — each measurement has a single outcome. Smolin takes this fact as evidence that quantum theory must be wrong, and argues that any theory that supersedes quantum mechanics must do away with these multiple possibilities.

So how can such similar books, informed by the same evidence and drawing upon the same history, reach such divergent conclusions? Well, anyone who cares about politics knows that this type of informed disagreement happens all the time, especially, as with Carroll and Smolin, when the disagreements go well beyond questions that experiments could possibly resolve.

But there is another problem here. The question that both physicists gloss over is that of just how much we should expect to get out of our best physical theories. This question pokes through the foundation of quantum mechanics like rusted rebar, often luring scientists into arguments over parables meant to illuminate the obscure.

With this in mind, let’s try a parable of our own, a cartoon of the quantum predicament. In the tradition of such parables, it’s a story about knowing and not knowing.

We fade in on a scientist interviewing for a job. Let’s give this scientist a name, Bobby Alice, that telegraphs his helplessness to our didactic whims. During the part of the interview where the Reality Industries rep asks him if he has any questions, none of them are answered, except the one about his starting salary. This number is high enough to convince Bobby the job is right for him.

Knowing so little about Reality Industries, everything Bobby sees on his first day comes as a surprise, starting with the campus’s extensive security apparatus of long gated driveways, high tree-lined fences, and all the other standard X-Files elements. Most striking of all is his assigned building, a structure whose paradoxical design merits a special section of the morning orientation. After Bobby is given his project details (irrelevant for us), black-suited Mr. Smith–types tell him the bad news: So long as he works at Reality Industries, he may visit only the building’s fourth floor. This, they assure him, is standard, for all employees but the top executives. Each project team has its own floor, and the teams are never allowed to intermix.

The instructors follow this with what they claim is the good news. Yes, they admit, this tightly tiered approach led to worker distress in the old days, back on the old campus, where the building designs were brutalist and the depression rates were high. But the new building is designed to subvert such pressures. The trainers lead Bobby up to the fourth floor, up to his assignment, through a construction unlike any research facility he has ever seen. The walls are translucent and glow on all sides. So do the floor and ceiling. He is guided to look up, where he can see dark footprints roving about, shadows from the project team on the next floor. “The goal here,” his guide remarks, “is to encourage a sort of cultural continuity, even if we can’t all communicate.”

Over the next weeks, Bobby Alice becomes accustomed to the silent figures floating above him. Eventually, he comes to enjoy the fourth floor’s communal tracking of their fifth-floor counterparts, complete with invented names, invented personalities, invented purposes. He makes peace with the possibility that he is himself a fantasy figure for the third floor.

Then, one day, strange lights appear in a corner of the ceiling.

Naturally phlegmatic, Bobby Alice simply takes notes. But others on the fourth floor are noticeably less calm. The lights seem not to follow any known standard of the physics of footfalls, with lights of different colors blinking on and off seemingly at random, yet still giving the impression not merely of a constructed display but of some solid fixture in the fifth-floor commons. Some team members, formerly of the same anti-philosophical bent as most hires, now spend their coffee breaks discussing increasingly esoteric metaphysics. Productivity declines.

Meanwhile, Bobby has set up a camera to record data. As a work-related extracurricular, he is able in the following weeks to develop a general mathematical description that captures an unexpected order in the flashing lights. This description does not predict exactly which lights will blink when, but, by telling a story about what’s going on between the frames captured by the camera, he can predict what sorts of patterns are allowed, how often, and in what order.

Does this solve the mystery? Apparently it does. Conspiratorial voices on the fourth floor go quiet. The “Alice formalism” immediately finds other applications, and Reality Industries gives Dr. Alice a raise. They give him everything he could want — everything except access to the fifth floor.

In time, Bobby Alice becomes a fourth-floor legend. Yet as the years pass — and pass with the corner lights as an apparently permanent fixture — new employees occasionally massage the Alice formalism to unexpected ends. One worker discovers that he can rid the lights of their randomness if he imagines them as the reflections from a tank of iridescent fish, with the illusion of randomness arising in part because it’s a 3-D projection on a 2-D ceiling, and in part because the fish swim funny. The Alice formalism offers a series of color maps showing the different possible light patterns that might appear at any given moment, and another prominent interpreter argues, with supposed sincerity (although it’s hard to tell), that actually not one but all of the maps occur at once — each in parallel branching universes generated by that spooky alien light source up on the fifth floor.

As the interpretations proliferate, Reality Industries management occasionally finds these side quests to be a drain on corporate resources. But during the Alice decades, the fourth floor has somehow become the company’s most productive. Why? Who knows. Why fight it?

The history of quantum mechanics, being a matter of record, obviously has more twists than any illustrative cartoon can capture. Readers interested in that history are encouraged to read Adam Becker’s recent retelling, What Is Real?, which was reviewed in these pages (“Make Physics Real Again,” Winter 2019). But the above sketch is one attempt to capture the unusual flavor of this history.

Like the fourth-floor scientists in our story who, sight unseen, invented personas for all their fifth-floor counterparts, nineteenth-century physicists are often caricatured as having oversold their grasp on nature’s secrets. But longstanding puzzles — puzzles involving chemical spectra and atomic structure rather than blinking ceiling lights — led twentieth-century pioneers like Niels Bohr, Wolfgang Pauli, and Werner Heisenberg to invent a new style of physical theory. As with the formalism of Bobby Alice, mature quantum theories in this tradition were abstract, offering probabilistic predictions for the outcomes of real-world measurements, while remaining agnostic about what it all meant, about what fundamental reality undergirded the description.

From the very beginning, a counter-tradition associated with names like Albert Einstein, Louis de Broglie, and Erwin Schrödinger insisted that quantum models must ultimately capture something (but probably not everything) about the real stuff moving around us. This tradition gave us visions of subatomic entities as lumps of matter vibrating in space, with the sorts of orbital visualizations one first sees in high school chemistry.

But once the various quantum ideas were codified and physicists realized that they worked remarkably well, most research efforts turned away from philosophical agonizing and toward applications. The second generation of quantum theorists, unburdened by revolutionary angst, replaced every part of classical physics with a quantum version. As Max Planck famously wrote, “A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die.” Since this inherited framework works well enough to get new researchers started, the question of what it all means is usually left alone.

Of course, this question is exactly what most non-experts want answered. For past generations, books with titles like The Tao of Physics and Quantum Reality met this demand, with discussions that wildly mixed conventions of scientific reportage with wisdom literature. Even once quantum theories themselves became familiar, interpretations of them were still new enough to be exciting.

Today, even this thrill is gone. We are now in the part of the story where no one can remember what it was like not to have the blinking lights on the ceiling. Despite the origins of quantum theory as an empirical framework — a container flexible enough to wrap around whatever surprises experiments might uncover — its success has led today’s theorists to regard it as fundamental, a base upon which further speculations might be built.

Regaining that old feeling of disorientation now requires some extra steps.

As interlopers in an ongoing turf war, modern explainers of quantum theory must reckon both with arguments like Niels Bohr’s, which emphasize the theory’s limits on knowledge, and with criticisms like Albert Einstein’s, which demand that the theory represent the real world. Sean Carroll’s Something Deeply Hidden pitches itself to both camps. The title stems from an Einstein anecdote. As “a child of four or five years,” Einstein was fascinated by his father’s compass. He concluded, “Something deeply hidden had to be behind things.” Carroll agrees with this, but argues that the world at its roots is quantum. We only need courage to apply that old Einsteinian realism to our quantum universe.

Carroll is a prolific popularizer — alongside his books, his blog, and his Twitter account, he has also recorded three courses of lectures for general audiences, and for the last year has released a weekly podcast. His new book is appealingly didactic, providing a sustained defense of the Many Worlds interpretation of quantum mechanics, first offered by Hugh Everett III as a graduate student in the 1950s. Carroll maintains that Many Worlds is just quantum mechanics, and he works hard to convince us that supporters aren’t merely perverse. In the early days of electrical research, followers of James Clerk Maxwell were called Maxwellians, but today all physicists are Maxwellians. If Carroll’s project pans out, someday we’ll all be Everettians.

Standard applications of quantum theory follow a standard logic. A physical system is prepared in some initial condition, and modeled using a mathematical representation called a “wave function.” Then the system changes in time, and these changes, governed by the Schrödinger equation, are tracked in the system’s wave function. But when we interpret the wave function in order to generate a prediction of what we will observe, we get only probabilities of possible experimental outcomes.

Carroll insists that this quantum recipe isn’t good enough. It may be sufficient if we care only to predict the likelihood of various outcomes for a given experiment, but it gives us no sense of what the world is like. “Quantum mechanics, in the form in which it is currently presented in physics textbooks,” he writes, “represents an oracle, not a true understanding.”

Most of the quantum mysteries live in the process of measurement. Questions of exactly how measurements force determinate outcomes, and of exactly what we sweep under the rug with that bland word “measurement,” are known collectively in quantum lore as the “measurement problem.” Quantum interpretations are distinguished by how they solve this problem. Usually, solutions involve rejecting some key element of common belief. In the Many Worlds interpretation, the key belief we are asked to reject is that of one single world, with one single future.

The version of the Many Worlds solution given to us in Something Deeply Hidden sidesteps the history of the theory in favor of a logical reconstruction. What Carroll enunciates here is something like a quantum minimalism: “There is only one wave function, which describes the entire system we care about, all the way up to the ‘wave function of the universe’ if we’re talking about the whole shebang.”

Putting this another way, Carroll is a realist about the quantum wave function, and suggests that this mathematical object simply is the deep-down thing, while everything else, from particles to planets to people, are merely its downstream effects. (Sorry, people!) The world of our experience, in this picture, is just a tiny sliver of the real one, where all possible outcomes — all outcomes for which the usual quantum recipe assigns a non-zero probability — continue to exist, buried somewhere out of view in the universal wave function. Hence the “Many Worlds” moniker. What we experience as a single world, chock-full of foreclosed opportunities, Many Worlders understand as but one swirl of mist foaming off an ever-breaking wave.

The position of Many Worlds may not yet be common, but neither is it new. Carroll, for his part, is familiar enough with it to be blasé, presenting it in the breezy tone of a man with all the answers. The virtue of his presentation is that whether or not you agree with him, he gives you plenty to consider, including expert glosses on ongoing debates in cosmology and field theory. But Something Deeply Hidden still fails where it matters. “If we train ourselves to discard our classical prejudices, and take the lessons of quantum mechanics at face value,” Carroll writes near the end, “we may eventually learn how to extract our universe from the wave function.”

But shouldn’t it be the other way around? Why should we have to work so hard to “extract our universe from the wave function,” when the wave function itself is an invention of physicists, not the inerrant revelation of some transcendental truth? Interpretations of quantum theory live or die on how well they are able to explain its success, and the most damning criticism of the Many Worlds interpretation is that it’s hard to see how it improves on the standard idea that probabilities in quantum theory are just a way to quantify our expectations about various measurement outcomes.

Carroll argues that, in Many Worlds, probabilities arise from self-locating uncertainty: “You know everything there is to know about the universe, except where you are within it.” During a measurement, “a single world splits into two, and there are now two people where I used to be just one.” “For a brief while, then, there are two copies of you, and those two copies are precisely identical. Each of them lives on a distinct branch of the wave function, but neither of them knows which one it is on.” The job of the physicist is then to calculate the chance that he has ended up on one branch or another — which produces the probabilities of the various measurement outcomes.

If, alongside Carroll, you convince yourself that it is reasonable to suppose that these worlds exist outside our imaginations, you still might conclude, as he does, that “at the end of the day it doesn’t really change how we should go through our lives.” This conclusion comes in a chapter called “The Human Side,” where Carroll also dismisses the possibility that humans might have a role in branching the wave function, or indeed that we have any ultimate agency: “While you might be personally unsure what choice you will eventually make, the outcome is encoded in your brain.” These views are rewarmed arguments from his previous book, The Big Picture, which I reviewed in these pages (“Pop Goes the Physics,” Spring 2017) and won’t revisit here.

Although this book is unlikely to turn doubters of Many Worlds into converts, it is a credit to Carroll that he leaves one with the impression that the doctrine is probably consistent, whether or not it is true. But internal consistency has little power against an idea that feels unacceptable. For doctrines like Many Worlds, with key claims that are in principle unobservable, some of us will always want a way out.

Lee Smolin is one such seeker for whom Many Worlds realism — or “magical realism,” as he likes to call it — is not real enough. In his new book, Einstein’s Unfinished Revolution, Smolin assures us that “however weird the quantum world may be, it need not threaten anyone’s belief in commonsense realism. It is possible to be a realist while living in the quantum universe.” But if you expect “commonsense realism” by the end of his book, prepare for a surprise.

Smolin is less congenial than Carroll, with a brooding vision of his fellow scientists less as fellow travelers and more as members of an “orthodoxy of the unreal,” as Smolin stirringly puts it. Smolin is best known for his role as doomsayer about string theory — his 2006 book The Trouble with Physics functioned as an entertaining jeremiad. But while his books all court drama and are never boring, that often comes at the expense of argumentative care.

Einstein’s Unfinished Revolution can be summarized briefly. Smolin states early on that quantum theory is wrong: It gives probabilities for many and various measurement outcomes, whereas the world of our observation is solid and singular. Nevertheless, quantum theory can still teach us important lessons about nature. For instance, Smolin takes at face value the claim that entangled particles far apart in the universe can communicate information to each other instantaneously, unbounded by the speed of light. This ability of quantum entities to be correlated while separated in space is technically called “nonlocality,” which Smolin enshrines as a fundamental principle. And while he takes inspiration from an existing nonlocal quantum theory, he rejects it for violating other favorite physical principles. Instead, he elects to redo physics from scratch, proposing partial theories that would allow his favored ideals to survive.

This is, of course, an insane act of hubris. But no red line separates the crackpot from the visionary in theoretical physics. Because Smolin presents himself as a man up against the status quo, his books are as much autobiography as popular science, with personality bleeding into intellectual commitments. Smolin’s last popular book, Time Reborn (2013), showed him changing his mind about the nature of time after doing bedtime with his son. This time around, Smolin tells us in the preface about how he came to view the universe as nonlocal:

I vividly recall that when I understood the proof of the theorem, I went outside in the warm afternoon and sat on the steps of the college library, stunned. I pulled out a notebook and immediately wrote a poem to a girl I had a crush on, in which I told her that each time we touched there were electrons in our hands which from then on would be entangled with each other. I no longer recall who she was or what she made of my poem, or if I even showed it to her. But my obsession with penetrating the mystery of nonlocal entanglement, which began that day, has never since left me.

The book never seriously questions whether the arguments for nonlocality should convince us; Smolin’s experience of conviction must stand in for our own. These personal detours are fascinating, but do little to convince skeptics.

Once you start turning the pages of Einstein’s Unfinished Revolution, ideas fly by fast. First, Smolin gives us a tour of the quantum fundamentals — entanglement, nonlocality, and all that. Then he provides a thoughtful overview of solutions to the measurement problem, particularly those of David Bohm, whose complex legacy he lingers over admiringly. But by the end, Smolin abandons the plodding corporate truth of the scientist for the hope of a private perfection.

Many physicists have never heard of Bohm’s theory, and some who have still conclude that it’s worthless. Bohm attempted to salvage something like the old classical determinism, offering a way to understand measurement outcomes as caused by the motion of particles, which in turn are guided by waves. This conceptual simplicity comes at the cost of brazen nonlocality, and an explicit dualism of particles and waves. Einstein called the theory a “physical fairy-tale for children”; Robert Oppenheimer declared about Bohm that “we must agree to ignore him.”

Bohm’s theory is important to Smolin mainly as a prototype, to demonstrate that it’s possible to situate quantum mechanics within a single world — unlike Many Worlds, which Smolin seems to dislike less for physical than for ethical reasons: “It seems to me that the Many Worlds Interpretation offers a profound challenge to our moral thinking because it erases the distinction between the possible and the actual.” In his survey, Smolin sniffs each interpretation as he passes it, looking for a whiff of the real quantum story, which will preserve our single universe while also maintaining the virtues of all the partial successes.

When Smolin finally explains his own idiosyncratic efforts, his methods — at least in the version he has dramatized here — resemble some wild descendant of Cartesian rationalism. From his survey, Smolin lists the principles he would expect from an acceptable alternative to quantum theory. He then reports back to us on the incomplete models he has found that will support these principles.

Smolin’s tour leads us all over the place, from a review of Leibniz’s Monadology (“shockingly modern”), to a new law of physics he proposes (the “principle of precedence”), to a solution to the measurement problem involving nonlocal interactions among all similar systems everywhere in the universe. Smolin concludes with the grand claim that “the universe consists of nothing but views of itself, each from an event in its history.” Fine. Maybe there’s more to these ideas than a casual reader might glean, but after a few pages of sentences like, “An event is something that happens,” hope wanes.

For all their differences, Carroll and Smolin similarly insist that, once the basic rules governing quantum systems are properly understood, the rest should fall into place. “Once we understand what’s going on for two particles, the generalization to 1088 particles is just math,” Carroll assures us. Smolin is far less certain that physics is on the right track, but he, too, believes that progress will come with theoretical breakthroughs. “I have no better answer than to face the blank notebook,” Smolin writes. This was the path of Bohr, Einstein, Bohm and others. “Ask yourself which of the fundamental principles of the present canon must survive the coming revolution. That’s the first page. Then turn again to a blank page and start thinking.”

Physicists are always tempted to suppose that successful predictions prove that a theory describes how the world really is. And why not? Denying that quantum theory captures something essential about the character of those entities outside our heads that we label with words like “atoms” and “molecules” and “photons” seems far more perverse, as an interpretive strategy, than any of the mainstream interpretations we’ve already discussed. Yet one can admit that something is captured by quantum theory without jumping immediately to the assertion that everything must flow from it. An invented language doesn’t need to be universal to be useful, and it’s smart to keep on honing tools for thinking that have historically worked well.

As an old mentor of mine, John P. Ralston, wrote in his book How to Understand Quantum Mechanics, “We don’t know what nature is, and it is not clear whether quantum theory fully describes it. However, it’s not the worst thing. It has not failed yet.” This seems like the right attitude to take. Quantum theory is a fabulously rich subject, but the fact that it has not failed yet does not allow us to generalize its results indefinitely.

There is value in the exercises that Carroll and Smolin perform, in their attempts to imagine principled and orderly universes, to see just how far one can get with a straitjacketed imagination. But by assuming that everything is captured by the current version of quantum theory, Carroll risks credulity, foreclosing genuinely new possibilities. And by assuming that everything is up for grabs, Smolin risks paranoia, ignoring what is already understood.

Perhaps the agnostics among us are right to settle in as permanent occupants of Reality Industries’ fourth floor. We can accept that scientists have a role in creating stories that make sense, while also appreciating the possibility that the world might not be made of these stories. To the big, unresolved questions — questions about where randomness enters in the measurement process, or about how much of the world our physical theories might capture — we can offer only a laconic who knows? The world is filled with flashing lights, and we should try to find some order in them. Scientific success often involves inventing a language that makes the strange sensible, warping intuitions along the way. And while this process has allowed us to make progress, we should never let our intuitions get so strong that we stop scanning the ceiling for unexpected dazzlements.

David Kordahl is a graduate student in physics at Arizona State University. David Kordahl, “Inventing the Universe,” The New Atlantis, Number 61, Winter 2020, pp. 114-124.

5 Pandemic Mistakes We Keep Repeating (The Atlantic)

theatlantic.com

Zeynep Tufekci

February 26, 2021


We can learn from our failures.
Photo illustration showing a Trump press conference, a vaccine syringe, and Anthony Fauci
Alex Wong / Chet Strange/ Sarah Silbiger / Bloomberg / Getty / The Atlantic

When the polio vaccine was declared safe and effective, the news was met with jubilant celebration. Church bells rang across the nation, and factories blew their whistles. “Polio routed!” newspaper headlines exclaimed. “An historic victory,” “monumental,” “sensational,” newscasters declared. People erupted with joy across the United States. Some danced in the streets; others wept. Kids were sent home from school to celebrate.

One might have expected the initial approval of the coronavirus vaccines to spark similar jubilation—especially after a brutal pandemic year. But that didn’t happen. Instead, the steady drumbeat of good news about the vaccines has been met with a chorus of relentless pessimism.

The problem is not that the good news isn’t being reported, or that we should throw caution to the wind just yet. It’s that neither the reporting nor the public-health messaging has reflected the truly amazing reality of these vaccines. There is nothing wrong with realism and caution, but effective communication requires a sense of proportion—distinguishing between due alarm and alarmism; warranted, measured caution and doombait; worst-case scenarios and claims of impending catastrophe. We need to be able to celebrate profoundly positive news while noting the work that still lies ahead. However, instead of balanced optimism since the launch of the vaccines, the public has been offered a lot of misguided fretting over new virus variants, subjected to misleading debates about the inferiority of certain vaccines, and presented with long lists of things vaccinated people still cannot do, while media outlets wonder whether the pandemic will ever end.

This pessimism is sapping people of energy to get through the winter, and the rest of this pandemic. Anti-vaccination groups and those opposing the current public-health measures have been vigorously amplifying the pessimistic messages—especially the idea that getting vaccinated doesn’t mean being able to do more—telling their audiences that there is no point in compliance, or in eventual vaccination, because it will not lead to any positive changes. They are using the moment and the messaging to deepen mistrust of public-health authorities, accusing them of moving the goalposts and implying that we’re being conned. Either the vaccines aren’t as good as claimed, they suggest, or the real goal of pandemic-safety measures is to control the public, not the virus.

Five key fallacies and pitfalls have affected public-health messaging, as well as media coverage, and have played an outsize role in derailing an effective pandemic response. These problems were deepened by the ways that we—the public—developed to cope with a dreadful situation under great uncertainty. And now, even as vaccines offer brilliant hope, and even though, at least in the United States, we no longer have to deal with the problem of a misinformer in chief, some officials and media outlets are repeating many of the same mistakes in handling the vaccine rollout.

The pandemic has given us an unwelcome societal stress test, revealing the cracks and weaknesses in our institutions and our systems. Some of these are common to many contemporary problems, including political dysfunction and the way our public sphere operates. Others are more particular, though not exclusive, to the current challenge—including a gap between how academic research operates and how the public understands that research, and the ways in which the psychology of coping with the pandemic have distorted our response to it.

Recognizing all these dynamics is important, not only for seeing us through this pandemic—yes, it is going to end—but also to understand how our society functions, and how it fails. We need to start shoring up our defenses, not just against future pandemics but against all the myriad challenges we face—political, environmental, societal, and technological. None of these problems is impossible to remedy, but first we have to acknowledge them and start working to fix them—and we’re running out of time.

The past 12 months were incredibly challenging for almost everyone. Public-health officials were fighting a devastating pandemic and, at least in this country, an administration hell-bent on undermining them. The World Health Organization was not structured or funded for independence or agility, but still worked hard to contain the disease. Many researchers and experts noted the absence of timely and trustworthy guidelines from authorities, and tried to fill the void by communicating their findings directly to the public on social media. Reporters tried to keep the public informed under time and knowledge constraints, which were made more severe by the worsening media landscape. And the rest of us were trying to survive as best we could, looking for guidance where we could, and sharing information when we could, but always under difficult, murky conditions.

Despite all these good intentions, much of the public-health messaging has been profoundly counterproductive. In five specific ways, the assumptions made by public officials, the choices made by traditional media, the way our digital public sphere operates, and communication patterns between academic communities and the public proved flawed.

Risk Compensation

One of the most important problems undermining the pandemic response has been the mistrust and paternalism that some public-health agencies and experts have exhibited toward the public. A key reason for this stance seems to be that some experts feared that people would respond to something that increased their safety—such as masks, rapid tests, or vaccines—by behaving recklessly. They worried that a heightened sense of safety would lead members of the public to take risks that would not just undermine any gains, but reverse them.

The theory that things that improve our safety might provide a false sense of security and lead to reckless behavior is attractive—it’s contrarian and clever, and fits the “here’s something surprising we smart folks thought about” mold that appeals to, well, people who think of themselves as smart. Unsurprisingly, such fears have greeted efforts to persuade the public to adopt almost every advance in safety, including seat belts, helmets, and condoms.

But time and again, the numbers tell a different story: Even if safety improvements cause a few people to behave recklessly, the benefits overwhelm the ill effects. In any case, most people are already interested in staying safe from a dangerous pathogen. Further, even at the beginning of the pandemic, sociological theory predicted that wearing masks would be associated with increased adherence to other precautionary measures—people interested in staying safe are interested in staying safe—and empirical research quickly confirmed exactly that. Unfortunately, though, the theory of risk compensation—and its implicit assumptions—continue to haunt our approach, in part because there hasn’t been a reckoning with the initial missteps.

Rules in Place of Mechanisms and Intuitions

Much of the public messaging focused on offering a series of clear rules to ordinary people, instead of explaining in detail the mechanisms of viral transmission for this pathogen. A focus on explaining transmission mechanisms, and updating our understanding over time, would have helped empower people to make informed calculations about risk in different settings. Instead, both the CDC and the WHO chose to offer fixed guidelines that lent a false sense of precision.

In the United States, the public was initially told that “close contact” meant coming within six feet of an infected individual, for 15 minutes or more. This messaging led to ridiculous gaming of the rules; some establishments moved people around at the 14th minute to avoid passing the threshold. It also led to situations in which people working indoors with others, but just outside the cutoff of six feet, felt that they could take their mask off. None of this made any practical sense. What happened at minute 16? Was seven feet okay? Faux precision isn’t more informative; it’s misleading.

All of this was complicated by the fact that key public-health agencies like the CDC and the WHO were late to acknowledge the importance of some key infection mechanisms, such as aerosol transmission. Even when they did so, the shift happened without a proportional change in the guidelines or the messaging—it was easy for the general public to miss its significance.

Frustrated by the lack of public communication from health authorities, I wrote an article last July on what we then knew about the transmission of this pathogen—including how it could be spread via aerosols that can float and accumulate, especially in poorly ventilated indoor spaces. To this day, I’m contacted by people who describe workplaces that are following the formal guidelines, but in ways that defy reason: They’ve installed plexiglass, but barred workers from opening their windows; they’ve mandated masks, but only when workers are within six feet of one another, while permitting them to be taken off indoors during breaks.

Perhaps worst of all, our messaging and guidelines elided the difference between outdoor and indoor spaces, where, given the importance of aerosol transmission, the same precautions should not apply. This is especially important because this pathogen is overdispersed: Much of the spread is driven by a few people infecting many others at once, while most people do not transmit the virus at all.

After I wrote an article explaining how overdispersion and super-spreading were driving the pandemic, I discovered that this mechanism had also been poorly explained. I was inundated by messages from people, including elected officials around the world, saying they had no idea that this was the case. None of it was secret—numerous academic papers and articles had been written about it—but it had not been integrated into our messaging or our guidelines despite its great importance.

Crucially, super-spreading isn’t equally distributed; poorly ventilated indoor spaces can facilitate the spread of the virus over longer distances, and in shorter periods of time, than the guidelines suggested, and help fuel the pandemic.

Outdoors? It’s the opposite.

There is a solid scientific reason for the fact that there are relatively few documented cases of transmission outdoors, even after a year of epidemiological work: The open air dilutes the virus very quickly, and the sun helps deactivate it, providing further protection. And super-spreading—the biggest driver of the pandemic— appears to be an exclusively indoor phenomenon. I’ve been tracking every report I can find for the past year, and have yet to find a confirmed super-spreading event that occurred solely outdoors. Such events might well have taken place, but if the risk were great enough to justify altering our lives, I would expect at least a few to have been documented by now.

And yet our guidelines do not reflect these differences, and our messaging has not helped people understand these facts so that they can make better choices. I published my first article pleading for parks to be kept open on April 7, 2020—but outdoor activities are still banned by some authorities today, a full year after this dreaded virus began to spread globally.

We’d have been much better off if we gave people a realistic intuition about this virus’s transmission mechanisms. Our public guidelines should have been more like Japan’s, which emphasize avoiding the three C’s—closed spaces, crowded places, and close contact—that are driving the pandemic.

Scolding and Shaming

Throughout the past year, traditional and social media have been caught up in a cycle of shaming—made worse by being so unscientific and misguided. How dare you go to the beach? newspapers have scolded us for months, despite lacking evidence that this posed any significant threat to public health. It wasn’t just talk: Many cities closed parks and outdoor recreational spaces, even as they kept open indoor dining and gyms. Just this month, UC Berkeley and the University of Massachusetts at Amherst both banned students from taking even solitary walks outdoors.

Even when authorities relax the rules a bit, they do not always follow through in a sensible manner. In the United Kingdom, after some locales finally started allowing children to play on playgrounds—something that was already way overdue—they quickly ruled that parents must not socialize while their kids have a normal moment. Why not? Who knows?

On social media, meanwhile, pictures of people outdoors without masks draw reprimands, insults, and confident predictions of super-spreading—and yet few note when super-spreading fails to follow.

While visible but low-risk activities attract the scolds, other actual risks—in workplaces and crowded households, exacerbated by the lack of testing or paid sick leave—are not as easily accessible to photographers. Stefan Baral, an associate epidemiology professor at the Johns Hopkins Bloomberg School of Public Health, says that it’s almost as if we’ve “designed a public-health response most suitable for higher-income” groups and the “Twitter generation”—stay home; have your groceries delivered; focus on the behaviors you can photograph and shame online—rather than provide the support and conditions necessary for more people to keep themselves safe.

And the viral videos shaming people for failing to take sensible precautions, such as wearing masks indoors, do not necessarily help. For one thing, fretting over the occasional person throwing a tantrum while going unmasked in a supermarket distorts the reality: Most of the public has been complying with mask wearing. Worse, shaming is often an ineffective way of getting people to change their behavior, and it entrenches polarization and discourages disclosure, making it harder to fight the virus. Instead, we should be emphasizing safer behavior and stressing how many people are doing their part, while encouraging others to do the same.

Harm Reduction

Amidst all the mistrust and the scolding, a crucial public-health concept fell by the wayside. Harm reduction is the recognition that if there is an unmet and yet crucial human need, we cannot simply wish it away; we need to advise people on how to do what they seek to do more safely. Risk can never be completely eliminated; life requires more than futile attempts to bring risk down to zero. Pretending we can will away complexities and trade-offs with absolutism is counterproductive. Consider abstinence-only education: Not letting teenagers know about ways to have safer sex results in more of them having sex with no protections.

As Julia Marcus, an epidemiologist and associate professor at Harvard Medical School, told me, “When officials assume that risks can be easily eliminated, they might neglect the other things that matter to people: staying fed and housed, being close to loved ones, or just enjoying their lives. Public health works best when it helps people find safer ways to get what they need and want.””

Another problem with absolutism is the “abstinence violation” effect, Joshua Barocas, an assistant professor at the Boston University School of Medicine and Infectious Diseases, told me. When we set perfection as the only option, it can cause people who fall short of that standard in one small, particular way to decide that they’ve already failed, and might as well give up entirely. Most people who have attempted a diet or a new exercise regimen are familiar with this psychological state. The better approach is encouraging risk reduction and layered mitigation—emphasizing that every little bit helps—while also recognizing that a risk-free life is neither possible nor desirable.

Socializing is not a luxury—kids need to play with one another, and adults need to interact. Your kids can play together outdoors, and outdoor time is the best chance to catch up with your neighbors is not just a sensible message; it’s a way to decrease transmission risks. Some kids will play and some adults will socialize no matter what the scolds say or public-health officials decree, and they’ll do it indoors, out of sight of the scolding.

And if they don’t? Then kids will be deprived of an essential activity, and adults will be deprived of human companionship. Socializing is perhaps the most important predictor of health and longevity, after not smoking and perhaps exercise and a healthy diet. We need to help people socialize more safely, not encourage them to stop socializing entirely.

The Balance Between Knowledge And Action

Last but not least, the pandemic response has been distorted by a poor balance between knowledge, risk, certainty, and action.

Sometimes, public-health authorities insisted that we did not know enough to act, when the preponderance of evidence already justified precautionary action. Wearing masks, for example, posed few downsides, and held the prospect of mitigating the exponential threat we faced. The wait for certainty hampered our response to airborne transmission, even though there was almost no evidence for—and increasing evidence against—the importance of fomites, or objects that can carry infection. And yet, we emphasized the risk of surface transmission while refusing to properly address the risk of airborne transmission, despite increasing evidence. The difference lay not in the level of evidence and scientific support for either theory—which, if anything, quickly tilted in favor of airborne transmission, and not fomites, being crucial—but in the fact that fomite transmission had been a key part of the medical canon, and airborne transmission had not.

Sometimes, experts and the public discussion failed to emphasize that we were balancing risks, as in the recurring cycles of debate over lockdowns or school openings. We should have done more to acknowledge that there were no good options, only trade-offs between different downsides. As a result, instead of recognizing the difficulty of the situation, too many people accused those on the other side of being callous and uncaring.

And sometimes, the way that academics communicate clashed with how the public constructs knowledge. In academia, publishing is the coin of the realm, and it is often done through rejecting the null hypothesis—meaning that many papers do not seek to prove something conclusively, but instead, to reject the possibility that a variable has no relationship with the effect they are measuring (beyond chance). If that sounds convoluted, it is—there are historical reasons for this methodology and big arguments within academia about its merits, but for the moment, this remains standard practice.

At crucial points during the pandemic, though, this resulted in mistranslations and fueled misunderstandings, which were further muddled by differing stances toward prior scientific knowledge and theory. Yes, we faced a novel coronavirus, but we should have started by assuming that we could make some reasonable projections from prior knowledge, while looking out for anything that might prove different. That prior experience should have made us mindful of seasonality, the key role of overdispersion, and aerosol transmission. A keen eye for what was different from the past would have alerted us earlier to the importance of presymptomatic transmission.

Thus, on January 14, 2020, the WHO stated that there was “no clear evidence of human-to-human transmission.” It should have said, “There is increasing likelihood that human-to-human transmission is taking place, but we haven’t yet proven this, because we have no access to Wuhan, China.” (Cases were already popping up around the world at that point.) Acting as if there was human-to-human transmission during the early weeks of the pandemic would have been wise and preventive.

Later that spring, WHO officials stated that there was “currently no evidence that people who have recovered from COVID-19 and have antibodies are protected from a second infection,” producing many articles laden with panic and despair. Instead, it should have said: “We expect the immune system to function against this virus, and to provide some immunity for some period of time, but it is still hard to know specifics because it is so early.”

Similarly, since the vaccines were announced, too many statements have emphasized that we don’t yet know if vaccines prevent transmission. Instead, public-health authorities should have said that we have many reasons to expect, and increasing amounts of data to suggest, that vaccines will blunt infectiousness, but that we’re waiting for additional data to be more precise about it. That’s been unfortunate, because while many, many things have gone wrong during this pandemic, the vaccines are one thing that has gone very, very right.

As late as April 2020, Anthony Fauci was slammed for being too optimistic for suggesting we might plausibly have vaccines in a year to 18 months. We had vaccines much, much sooner than that: The first two vaccine trials concluded a mere eight months after the WHO declared a pandemic in March 2020.

Moreover, they have delivered spectacular results. In June 2020, the FDA said a vaccine that was merely 50 percent efficacious in preventing symptomatic COVID-19 would receive emergency approval—that such a benefit would be sufficient to justify shipping it out immediately. Just a few months after that, the trials of the Moderna and Pfizer vaccines concluded by reporting not just a stunning 95 percent efficacy, but also a complete elimination of hospitalization or death among the vaccinated. Even severe disease was practically gone: The lone case classified as “severe” among 30,000 vaccinated individuals in the trials was so mild that the patient needed no medical care, and her case would not have been considered severe if her oxygen saturation had been a single percent higher.

These are exhilarating developments, because global, widespread, and rapid vaccination is our way out of this pandemic. Vaccines that drastically reduce hospitalizations and deaths, and that diminish even severe disease to a rare event, are the closest things we have had in this pandemic to a miracle—though of course they are the product of scientific research, creativity, and hard work. They are going to be the panacea and the endgame.

And yet, two months into an accelerating vaccination campaign in the United States, it would be hard to blame people if they missed the news that things are getting better.

Yes, there are new variants of the virus, which may eventually require booster shots, but at least so far, the existing vaccines are standing up to them well—very, very well. Manufacturers are already working on new vaccines or variant-focused booster versions, in case they prove necessary, and the authorizing agencies are ready for a quick turnaround if and when updates are needed. Reports from places that have vaccinated large numbers of individuals, and even trials in places where variants are widespread, are exceedingly encouraging, with dramatic reductions in cases and, crucially, hospitalizations and deaths among the vaccinated. Global equity and access to vaccines remain crucial concerns, but the supply is increasing.

Here in the United States, despite the rocky rollout and the need to smooth access and ensure equity, it’s become clear that toward the end of spring 2021, supply will be more than sufficient. It may sound hard to believe today, as many who are desperate for vaccinations await their turn, but in the near future, we may have to discuss what to do with excess doses.

So why isn’t this story more widely appreciated?

Part of the problem with the vaccines was the timing—the trials concluded immediately after the U.S. election, and their results got overshadowed in the weeks of political turmoil. The first, modest headline announcing the Pfizer-BioNTech results in The New York Times was a single column, “Vaccine Is Over 90% Effective, Pfizer’s Early Data Says,” below a banner headline spanning the page: “BIDEN CALLS FOR UNITED FRONT AS VIRUS RAGES.” That was both understandable—the nation was weary—and a loss for the public.

Just a few days later, Moderna reported a similar 94.5 percent efficacy. If anything, that provided even more cause for celebration, because it confirmed that the stunning numbers coming out of Pfizer weren’t a fluke. But, still amid the political turmoil, the Moderna report got a mere two columns on The New York Times’ front page with an equally modest headline: “Another Vaccine Appears to Work Against the Virus.”

So we didn’t get our initial vaccine jubilation.

But as soon as we began vaccinating people, articles started warning the newly vaccinated about all they could not do. “COVID-19 Vaccine Doesn’t Mean You Can Party Like It’s 1999,” one headline admonished. And the buzzkill has continued right up to the present. “You’re fully vaccinated against the coronavirus—now what? Don’t expect to shed your mask and get back to normal activities right away,” began a recent Associated Press story.

People might well want to party after being vaccinated. Those shots will expand what we can do, first in our private lives and among other vaccinated people, and then, gradually, in our public lives as well. But once again, the authorities and the media seem more worried about potentially reckless behavior among the vaccinated, and about telling them what not to do, than with providing nuanced guidance reflecting trade-offs, uncertainty, and a recognition that vaccination can change behavior. No guideline can cover every situation, but careful, accurate, and updated information can empower everyone.

Take the messaging and public conversation around transmission risks from vaccinated people. It is, of course, important to be alert to such considerations: Many vaccines are “leaky” in that they prevent disease or severe disease, but not infection and transmission. In fact, completely blocking all infection—what’s often called “sterilizing immunity”—is a difficult goal, and something even many highly effective vaccines don’t attain, but that doesn’t stop them from being extremely useful.

As Paul Sax, an infectious-disease doctor at Boston’s Brigham & Women’s Hospital, put it in early December, it would be enormously surprising “if these highly effective vaccines didn’t also make people less likely to transmit.” From multiple studies, we already knew that asymptomatic individuals—those who never developed COVID-19 despite being infected—were much less likely to transmit the virus. The vaccine trials were reporting 95 percent reductions in any form of symptomatic disease. In December, we learned that Moderna had swabbed some portion of trial participants to detect asymptomatic, silent infections, and found an almost two-thirds reduction even in such cases. The good news kept pouring in. Multiple studies found that, even in those few cases where breakthrough disease occurred in vaccinated people, their viral loads were lower—which correlates with lower rates of transmission. Data from vaccinated populations further confirmed what many experts expected all along: Of course these vaccines reduce transmission.

And yet, from the beginning, a good chunk of the public-facing messaging and news articles implied or claimed that vaccines won’t protect you against infecting other people or that we didn’t know if they would, when both were false. I found myself trying to convince people in my own social network that vaccines weren’t useless against transmission, and being bombarded on social media with claims that they were.

What went wrong? The same thing that’s going wrong right now with the reporting on whether vaccines will protect recipients against the new viral variants. Some outlets emphasize the worst or misinterpret the research. Some public-health officials are wary of encouraging the relaxation of any precautions. Some prominent experts on social media—even those with seemingly solid credentials—tend to respond to everything with alarm and sirens. So the message that got heard was that vaccines will not prevent transmission, or that they won’t work against new variants, or that we don’t know if they will. What the public needs to hear, though, is that based on existing data, we expect them to work fairly well—but we’ll learn more about precisely how effective they’ll be over time, and that tweaks may make them even better.

A year into the pandemic, we’re still repeating the same mistakes.

The top-down messaging is not the only problem. The scolding, the strictness, the inability to discuss trade-offs, and the accusations of not caring about people dying not only have an enthusiastic audience, but portions of the public engage in these behaviors themselves. Maybe that’s partly because proclaiming the importance of individual actions makes us feel as if we are in the driver’s seat, despite all the uncertainty.

Psychologists talk about the “locus of control”—the strength of belief in control over your own destiny. They distinguish between people with more of an internal-control orientation—who believe that they are the primary actors—and those with an external one, who believe that society, fate, and other factors beyond their control greatly influence what happens to us. This focus on individual control goes along with something called the “fundamental attribution error”—when bad things happen to other people, we’re more likely to believe that they are personally at fault, but when they happen to us, we are more likely to blame the situation and circumstances beyond our control.

An individualistic locus of control is forged in the U.S. mythos—that we are a nation of strivers and people who pull ourselves up by our bootstraps. An internal-control orientation isn’t necessarily negative; it can facilitate resilience, rather than fatalism, by shifting the focus to what we can do as individuals even as things fall apart around us. This orientation seems to be common among children who not only survive but sometimes thrive in terrible situations—they take charge and have a go at it, and with some luck, pull through. It is probably even more attractive to educated, well-off people who feel that they have succeeded through their own actions.

You can see the attraction of an individualized, internal locus of control in a pandemic, as a pathogen without a cure spreads globally, interrupts our lives, makes us sick, and could prove fatal.

There have been very few things we could do at an individual level to reduce our risk beyond wearing masks, distancing, and disinfecting. The desire to exercise personal control against an invisible, pervasive enemy is likely why we’ve continued to emphasize scrubbing and cleaning surfaces, in what’s appropriately called “hygiene theater,” long after it became clear that fomites were not a key driver of the pandemic. Obsessive cleaning gave us something to do, and we weren’t about to give it up, even if it turned out to be useless. No wonder there was so much focus on telling others to stay home—even though it’s not a choice available to those who cannot work remotely—and so much scolding of those who dared to socialize or enjoy a moment outdoors.

And perhaps it was too much to expect a nation unwilling to release its tight grip on the bottle of bleach to greet the arrival of vaccines—however spectacular—by imagining the day we might start to let go of our masks.

The focus on individual actions has had its upsides, but it has also led to a sizable portion of pandemic victims being erased from public conversation. If our own actions drive everything, then some other individuals must be to blame when things go wrong for them. And throughout this pandemic, the mantra many of us kept repeating—“Wear a mask, stay home; wear a mask, stay home”—hid many of the real victims.

Study after study, in country after country, confirms that this disease has disproportionately hit the poor and minority groups, along with the elderly, who are particularly vulnerable to severe disease. Even among the elderly, though, those who are wealthier and enjoy greater access to health care have fared better.

The poor and minority groups are dying in disproportionately large numbers for the same reasons that they suffer from many other diseases: a lifetime of disadvantages, lack of access to health care, inferior working conditions, unsafe housing, and limited financial resources.

Many lacked the option of staying home precisely because they were working hard to enable others to do what they could not, by packing boxes, delivering groceries, producing food. And even those who could stay home faced other problems born of inequality: Crowded housing is associated with higher rates of COVID-19 infection and worse outcomes, likely because many of the essential workers who live in such housing bring the virus home to elderly relatives.

Individual responsibility certainly had a large role to play in fighting the pandemic, but many victims had little choice in what happened to them. By disproportionately focusing on individual choices, not only did we hide the real problem, but we failed to do more to provide safe working and living conditions for everyone.

For example, there has been a lot of consternation about indoor dining, an activity I certainly wouldn’t recommend. But even takeout and delivery can impose a terrible cost: One study of California found that line cooks are the highest-risk occupation for dying of COVID-19. Unless we provide restaurants with funds so they can stay closed, or provide restaurant workers with high-filtration masks, better ventilation, paid sick leave, frequent rapid testing, and other protections so that they can safely work, getting food to go can simply shift the risk to the most vulnerable. Unsafe workplaces may be low on our agenda, but they do pose a real danger. Bill Hanage, associate professor of epidemiology at Harvard, pointed me to a paper he co-authored: Workplace-safety complaints to OSHA—which oversees occupational-safety regulations—during the pandemic were predictive of increases in deaths 16 days later.

New data highlight the terrible toll of inequality: Life expectancy has decreased dramatically over the past year, with Black people losing the most from this disease, followed by members of the Hispanic community. Minorities are also more likely to die of COVID-19 at a younger age. But when the new CDC director, Rochelle Walensky, noted this terrible statistic, she immediately followed up by urging people to “continue to use proven prevention steps to slow the spread—wear a well-fitting mask, stay 6 ft away from those you do not live with, avoid crowds and poorly ventilated places, and wash hands often.”

Those recommendations aren’t wrong, but they are incomplete. None of these individual acts do enough to protect those to whom such choices aren’t available—and the CDC has yet to issue sufficient guidelines for workplace ventilation or to make higher-filtration masks mandatory, or even available, for essential workers. Nor are these proscriptions paired frequently enough with prescriptions: Socialize outdoors, keep parks open, and let children play with one another outdoors.

Vaccines are the tool that will end the pandemic. The story of their rollout combines some of our strengths and our weaknesses, revealing the limitations of the way we think and evaluate evidence, provide guidelines, and absorb and react to an uncertain and difficult situation.

But also, after a weary year, maybe it’s hard for everyone—including scientists, journalists, and public-health officials—to imagine the end, to have hope. We adjust to new conditions fairly quickly, even terrible new conditions. During this pandemic, we’ve adjusted to things many of us never thought were possible. Billions of people have led dramatically smaller, circumscribed lives, and dealt with closed schools, the inability to see loved ones, the loss of jobs, the absence of communal activities, and the threat and reality of illness and death.

Hope nourishes us during the worst times, but it is also dangerous. It upsets the delicate balance of survival—where we stop hoping and focus on getting by—and opens us up to crushing disappointment if things don’t pan out. After a terrible year, many things are understandably making it harder for us to dare to hope. But, especially in the United States, everything looks better by the day. Tragically, at least 28 million Americans have been confirmed to have been infected, but the real number is certainly much higher. By one estimate, as many as 80 million have already been infected with COVID-19, and many of those people now have some level of immunity. Another 46 million people have already received at least one dose of a vaccine, and we’re vaccinating millions more each day as the supply constraints ease. The vaccines are poised to reduce or nearly eliminate the things we worry most about—severe disease, hospitalization, and death.

Not all our problems are solved. We need to get through the next few months, as we race to vaccinate against more transmissible variants. We need to do more to address equity in the United States—because it is the right thing to do, and because failing to vaccinate the highest-risk people will slow the population impact. We need to make sure that vaccines don’t remain inaccessible to poorer countries. We need to keep up our epidemiological surveillance so that if we do notice something that looks like it may threaten our progress, we can respond swiftly.

And the public behavior of the vaccinated cannot change overnight—even if they are at much lower risk, it’s not reasonable to expect a grocery store to try to verify who’s vaccinated, or to have two classes of people with different rules. For now, it’s courteous and prudent for everyone to obey the same guidelines in many public places. Still, vaccinated people can feel more confident in doing things they may have avoided, just in case—getting a haircut, taking a trip to see a loved one, browsing for nonessential purchases in a store.

But it is time to imagine a better future, not just because it’s drawing nearer but because that’s how we get through what remains and keep our guard up as necessary. It’s also realistic—reflecting the genuine increased safety for the vaccinated.

Public-health agencies should immediately start providing expanded information to vaccinated people so they can make informed decisions about private behavior. This is justified by the encouraging data, and a great way to get the word out on how wonderful these vaccines really are. The delay itself has great human costs, especially for those among the elderly who have been isolated for so long.

Public-health authorities should also be louder and more explicit about the next steps, giving us guidelines for when we can expect easing in rules for public behavior as well. We need the exit strategy spelled out—but with graduated, targeted measures rather than a one-size-fits-all message. We need to let people know that getting a vaccine will almost immediately change their lives for the better, and why, and also when and how increased vaccination will change more than their individual risks and opportunities, and see us out of this pandemic.

We should encourage people to dream about the end of this pandemic by talking about it more, and more concretely: the numbers, hows, and whys. Offering clear guidance on how this will end can help strengthen people’s resolve to endure whatever is necessary for the moment—even if they are still unvaccinated—by building warranted and realistic anticipation of the pandemic’s end.

Hope will get us through this. And one day soon, you’ll be able to hop off the subway on your way to a concert, pick up a newspaper, and find the triumphant headline: “COVID Routed!”

Zeynep Tufekci is a contributing writer at The Atlantic and an associate professor at the University of North Carolina. She studies the interaction between digital technology, artificial intelligence, and society.

Hélio Schwartsman: Bolsonaro, a ciência e a ética (Folha de S.Paulo)

Artigo original

17 de abril de 2020

Hoje eu vou dar uma de filósofo chato e preciosista. Tornou-se um lugar-comum afirmar que Bolsonaro age contra a ciência e que suas atitudes diante da pandemia de Covid -19 são absurdas. Concordo que são absurdas, mas receio que não seja tão simples carimbá-las como anticientíficas.

Não me entendam mal, sou fã da ciência. É a ela que devemos quase todos os desenvolvimentos que tornaram a existência humana menos miserável nos últimos séculos. Mas, se quisermos usar os conceitos com algum rigor, a ciência nunca nos diz como devemos atuar.

Quem chamou a atenção para o problema foi David Hume (1711-1776). Para o filósofo, existe uma diferença lógica fundamental entre proposições descritivas, que são as que a ciência nos dá, e proposições prescritivas ou normativas, que são as que se traduzem em decisões de como agir. Nós nunca podemos extrair as segundas diretamente das primeiras. Esse passo necessariamente envolve valores, que não são do domínio da ciência, mas da ética.

Isso significa que a ciência só vai até certo ponto. Ela nos esclarece sobre o comportamento de vírus novos em populações suscetíveis, alerta para a força avassaladora da curva exponencial e vai nos municiando com os parâmetros epidemiológicos do Sars-Cov-2, sobre os quais ainda paira muita incerteza. O que fazemos com essas informações, porém, já não é da alçada da ciência.

Muitas vezes, os cenários traçados pelos especialistas são tão desequilibrados que não deixam margem a dúvida. A escolha sobre o que fazer se torna simples aplicação do bom senso. É o caso da adoção do isolamento social nesta primeira fase da epidemia. Em outras tantas, porém, sobrepõem-se camadas adicionais de complexidade, que precisamos sopesar à luz de valores.

O ponto central é que nossas decisões devem ser informadas pela ciência, mas são inapelavelmente determinadas pela ética —​ou pela falta dela.

A Giant Bumptious Litter: Donna Haraway on Truth, Technology, and Resisting Extinction (Logic)

Issue 9 / Nature December 07, 2019

Donna Haraway at her desk, smiling.
Donna Haraway in her home in Santa Cruz. A still from Donna Haraway: Story Telling for Earthly Survival, a film by Fabrizio Terranova.

The history of philosophy is also a story about real estate.

Driving into Santa Cruz to visit Donna Haraway, we can’t help feeling that we were born too late. The metal sculpture of a donkey standing on Haraway’s front porch, the dogs that scramble to her front door barking when we ring the bell, and the big black rooster strutting in the coop out back — the entire setting evokes an era of freedom and creativity that postwar wealth made possible in Northern California.

Here was a counterculture whose language and sensibility the tech industry sometimes adopts, but whose practitioners it has mostly priced out. Haraway, who came to the University of Santa Cruz in 1980 to take up the first tenured professorship in feminist theory in the US, still conveys the sense of a wide‑open world.

Haraway was part of an influential cohort of feminist scholars who trained as scientists before turning to the philosophy of science in order to investigate how beliefs about gender shaped the production of knowledge about nature. Her most famous text remains “A Cyborg Manifesto,” published in 1985. It began with an assignment on feminist strategy for the Socialist Review after the election of Ronald Reagan and grew into an oracular meditation on how cybernetics and digitization had changed what it meant to be male or female — or, really, any kind of person. It gained such a cult following that Hari Kunzru, profiling her for Wired years later, wrote: “To boho twentysomethings, her name has the kind of cachet usually reserved for techno acts or new phenethylamines.”

The cyborg vision of gender as changing and changeable was radically new. Her map of how information technology linked people around the world into new chains of affiliation, exploitation, and solidarity feels prescient at a time when an Instagram influencer in Berlin can line the pockets of Silicon Valley executives by using a phone assembled in China that contains cobalt mined in Congo to access a platform moderated by Filipinas.

Haraway’s other most influential text may be an essay that appeared a few years later, on what she called “situated knowledges.” The idea, developed in conversation with feminist philosophers and activists such as Nancy Hartsock, concerns how truth is made. Concrete practices of particular people make truth, Haraway argued. The scientists in a laboratory don’t simply observe or conduct experiments on a cell, for instance, but co-create what a cell is by seeing, measuring, naming, and manipulating it. Ideas like these have a long history in American pragmatism. But they became politically explosive during the so-called Science Wars of the 1990s — a series of public debates among “scientific realists” and “postmodernists” with echoes in controversies about bias and objectivity in academia today.

Haraway’s more recent work has turned to human-animal relations and the climate crisis. She is a capacious yes, and thinker, the kind of leftist feminist who believes that the best thinking is done collectively. She is constantly citing other people, including graduate students, and giving credit to them. A recent documentary about her life and work by the Italian filmmaker Fabrizio Terranova, Story Telling for Earthly Survival, captures this sense of commitment, as well as her extraordinary intellectual agility and inventiveness.

At her home in Santa Cruz, we talked about her memories of the Science Wars and how they speak to our current “post-truth” moment, her views on contemporary climate activism and the Green New Deal, and why play is essential for politics.

Let’s begin at the beginning. Can you tell us a little bit about your childhood? 

I grew up in Denver, in the kind of white, middle-class neighborhood where people had gotten mortgages to build housing after the war. My father was a sportswriter. When I was eleven or twelve years old, I probably saw seventy baseball games a year. I learned to score as I learned to read.

My father never really wanted to do the editorials or the critical pieces exposing the industry’s financial corruption or what have you. He wanted to write game stories and he had a wonderful way with language. He was in no way a scholar — in fact he was in no way an intellectual — but he loved to tell stories and write them. I think I was interested in that as well — in words and the sensuality of words.

The other giant area of childhood storytelling was Catholicism. I was way too pious a little girl, completely inside of the colors and the rituals and the stories of saints and the rest of it. I ate and drank a sensual Catholicism that I think was rare in my generation. Very not Protestant. It was quirky then; it’s quirky now. And it shaped me. 

How so? 

One of the ways that it shaped me was through my love of biology as a materialist, sensual, fleshly being in the world as well as a knowledge-seeking apparatus. It shaped me in my sense that I saw biology simultaneously as a discourse and profoundly of the world. The Word and the flesh. 

Many of my colleagues in the History of Consciousness department, which comes much later in the story, were deeply engaged with Roland Barthes and with that kind of semiotics. I was very unconvinced and alienated from those thinkers because they were so profoundly Protestant in their secularized versions. They were so profoundly committed to the disjunction between the signifier and signified — so committed to a doctrine of the sign that is anti-Catholic, not just non-Catholic. The secularized sacramentalism that just drips from my work is against the doctrine of the sign that I felt was the orthodoxy in History of Consciousness. So Catholicism offered an alternative structure of affect. It was both profoundly theoretical and really intimate.

Did you start studying biology as an undergraduate? 

I got a scholarship that allowed me to go to Colorado College. It was a really good liberal arts school. I was there from 1962 to 1966 and I triple majored in philosophy and literature and zoology, which I regarded as branches of the same subject. They never cleanly separated. Then I got a Fulbright to go to Paris. Then I went to Yale to study cell, molecular, and developmental biology.

Did you get into politics at Yale? Or were you already political when you arrived? 

The politics came before that — probably from my Colorado College days, which were influenced by the civil rights movement. But it was at Yale that several things converged. I arrived in the fall of 1967, and a lot was happening.

New Haven in those years was full of very active politics. There was the antiwar movement. There was anti-chemical and anti-biological warfare activism among both the faculty and the graduate students in the science departments. There was Science for the People [a left-wing science organization] and the arrival of that wave of the women’s movement. My lover, Jaye Miller, who became my first husband, was gay, and gay liberation was just then emerging. There were ongoing anti-racist struggles: the Black Panther Party was very active in New Haven. 

Jaye and I were part of a commune where one of the members and her lover were Black Panthers. Gayle was a welfare rights activist and the mother of a young child, and her lover was named Sylvester. We had gotten the house for the commune from the university at a very low rent because we were officially an “experiment in Christian living.” It was a very interesting group of people! There was a five-year-old kid who lived in the commune, and he idolized Sylvester. He would clomp up the back stairs wearing these little combat boots yelling, “Power to the people! Power! Power!” It made our white downstairs neighbors nervous. They didn’t much like us anyway. It was very funny. 

Did this political climate influence your doctoral research at Yale?

I ended up writing on the ways that metaphors shape experimental practice in the laboratory. I was writing about the experience of the coming-into-being of organisms in the situated interactions of the laboratory. In a profound sense, such organisms are made but not made up. It’s not a relativist position at all; it’s a materialist position. It’s about what I later learned to call “situated knowledges.” It was in the doing of biology that this became more and more evident. 

How did these ideas go over with your labmates and colleagues?

It was never a friendly way of talking for my biology colleagues, who always felt that this verged way too far in the direction of relativism. 

It’s not that the words I was using were hard. It’s that the ideas were received with great suspicion. And I think that goes back to our discussion a few minutes ago about semiotics: I was trying to insist that the gapping of the signifier and the signified does not really determine what’s going on. 

But let’s face it: I was never very good in the lab! My lab work was appalling. Everything I ever touched died or got infected. I did not have good hands, and I didn’t have good passion. I was always more interested in the discourse, if you will. 

But you found a supervisor who was open to that? 

Yes, Evelyn Hutchinson. He was an ecologist and a man of letters and a man who had had a long history of making space for heterodox women. And I was only a tiny bit heterodox. Other women he had given space to were way more out there than me. Evelyn was also the one who got us our house for our “experiment in Christian living.” 

God bless. What happened after Yale?

Jaye got a job at the University of Hawaii teaching world history and I went as this funny thing called a “faculty wife.” I had an odd ontological status. I got a job there in the general science department. Jaye and I were also faculty advisers for something called New College, which was an experimental liberal-arts part of the university that lasted for several years. 

It was a good experience. Jaye and I got a divorce in that period but never really quite separated because we couldn’t figure out who got the camera and who got the sewing machine. That was the full extent of our property in those days. We were both part of a commune in Honolulu. 

Then one night, Jaye’s boss in the history department insisted that we go out drinking with him, at which point he attacked us both sexually and personally in a drunken, homophobic, and misogynist rant. And very shortly after that, Jaye was denied tenure. Both of us felt stunned and hurt. So I applied for a job in the History of Science department at Johns Hopkins, and Jaye applied for a job at the University of Texas in Houston. 

Baltimore and the Thickness of Worlding

How was Hopkins? 

History of Science was not a field I knew anything about, and the people who hired me knew that perfectly well. Therefore they assigned me to teach the incoming graduate seminar: Introduction to the History of Science. It was a good way to learn it! 

Hopkins was also where I met my current partner, Rusten. He was a graduate student in the History of Science department, where I was a baby assistant professor. (Today I would be fired and sued for sexual harassment — but that’s a whole other conversation.) 

Who were some of the other people who became important to you at Hopkins?

[The feminist philosopher] Nancy Hartsock and I shaped each other quite a bit in those years. We were part of the Marxist feminist scene in Baltimore. We played squash a lot — squash was a really intense part of our friendship. Her lover was a Marxist lover of Lenin; he gave lectures in town. 

In the mid-to-late 1970s, Nancy and I started the women’s studies program at Hopkins together. At the time, she was doing her article that became her book on feminist materialism, [Money, Sex, and Power: Toward a Feminist Historical Materialism]. It was very formative for me.

Those were also the years that Nancy and Sandra Harding and Patricia Hill Collins and Dorothy Smith were inventing feminist standpoint theory. I think all of us were already reaching toward those ideas, which we then consolidated as theoretical proposals to a larger community. The process was both individual and collective. We were putting these ideas together out of our struggles with our own work. You write in a closed room while tearing your hair out of your head — it was individual in that sense. But then it clicks, and the words come, and you consolidate theoretical proposals that you bring to your community. In that sense, it was a profoundly collective way of thinking with each other, and within the intensities of the social movements of the late 1960s and early 1970s. 

The ideas that you and other feminist philosophers were developing challenged many dominant assumptions about what truth is, where it comes from, and how it functions. More recently, in the era of Trump, we are often told we are living in a time of “post-truth” — and some critics have blamed philosophers like yourselves for creating the environment of “relativism” in which “post-truth” flourishes. How do you respond to that?

Our view was never that truth is just a question of which perspective you see it from. “Truth is perspectival” was never our position. We were against that. Feminist standpoint theory was always anti-perspectival. So was the Cyborg Manifesto, situated knowledges, [the philosopher] Bruno Latour’s notions of actor-network theory, and so on.

“Post-truth” gives up on materialism. It gives up on what I’ve called semiotic materialism: the idea that materialism is always situated meaning-making and never simply representation. These are not questions of perspective. They are questions of worlding and all of the thickness of that. Discourse is not just ideas and language. Discourse is bodily. It’s not embodied, as if it were stuck in a body. It’s bodily and it’s bodying, it’s worlding. This is the opposite of post-truth. This is about getting a grip on how strong knowledge claims are not just possible but necessary — worth living and dying for. 

When you, Latour, and others were criticized for “relativism,” particularly during the so-called Science Wars of the 1990s, was that how you responded? And could your critics understand your response?

Bruno and I were at a conference together in Brazil once. Which reminds me: If people want to criticize us, it ought to be for the amount of jet fuel involved in making and spreading these ideas! Not for leading the way to post-truth. We’re guilty on the carbon footprint issue, and Skyping doesn’t help, because I know what the carbon footprint of the cloud is. 

Anyhow. We were at this conference in Brazil. It was a bunch of primate field biologists, plus me and Bruno. And Stephen Glickman, a really cool biologist, a man we both love, who taught at UC Berkeley for years and studied hyenas, took us aside privately. He said, “Now, I don’t want to embarrass you. But do you believe in reality?” 

We were both kind of shocked by the question. First, we were shocked that it was a question of belief, which is a Protestant question. A confessional question. The idea that reality is a question of belief is a barely secularized legacy of the religious wars. In fact, reality is a matter of worlding and inhabiting. It is a matter of testing the holding-ness of things. Do things hold or not? 

Take evolution. The notion that you would or would not “believe” in evolution already gives away the game. If you say, “Of course I believe in evolution,” you have lost, because you have entered the semiotics of representationalism — and post-truth, frankly. You have entered an arena where these are all just matters of internal conviction and have nothing to do with the world. You have left the domain of worlding. 

The Science Warriors who attacked us during the Science Wars were determined to paint us as social constructionists — that all truth is purely socially constructed. And I think we walked into that. We invited those misreadings in a range of ways. We could have been more careful about listening and engaging more slowly. It was all too easy to read us in the way the Science Warriors did. Then the right wing took the Science Wars and ran with it, which eventually helped nourish the whole fake-news discourse.

Your opponents in the Science Wars championed “objectivity” over what they considered your “relativism.” Were you trying to stake out a position between those two terms? Or did you reject the idea that either of those terms even had a stable meaning?

Both terms inhabit the same ontological and epistemological frame — a frame that my colleagues and I have tried to make hard to inhabit. Sandra Harding insisted on “strong objectivity,” and my idiom was “situated knowledges.” We have tried to deauthorize the kind of possessive individualism that sees the world as units plus relations. You take the units, you mix them up with relations, you come up with results. Units plus relations equal the world. 

People like me say, “No thank you: it’s relationality all the way down.” You don’t have units plus relations. You just have relations. You have worlding. The whole story is about gerunds — worlding, bodying, everything-ing. The layers are inherited from other layers, temporalities, scales of time and space, which don’t nest neatly but have oddly configured geometries. Nothing starts from scratch. But the play — I think the concept of play is incredibly important in all of this — proposes something new, whether it’s the play of a couple of dogs or the play of scientists in the field. 

This is not about the opposition between objectivity and relativism. It’s about the thickness of worlding. It’s also about being of and for some worlds and not others; it’s about materialist commitment in many senses.

To this day I know only one or two scientists who like talking this way. And there are good reasons why scientists remain very wary of this kind of language. I belong to the Defend Science movement and in most public circumstances I will speak softly about my own ontological and epistemological commitments. I will use representational language. I will defend less-than-strong objectivity because I think we have to, situationally. 

Is that bad faith? Not exactly. It’s related to [what the postcolonial theorist Gayatri Chakravorty Spivak has called] “strategic essentialism.” There is a strategic use to speaking the same idiom as the people that you are sharing the room with. You craft a good-enough idiom so you can work on something together. I won’t always insist on what I think might be a stronger apparatus. I go with what we can make happen in the room together. And then we go further tomorrow.

In the struggles around climate change, for example, you have to join with your allies to block the cynical, well-funded, exterminationist machine that is rampant on the earth. I think my colleagues and I are doing that. We have not shut up, or given up on the apparatus that we developed. But one can foreground and background what is most salient depending on the historical conjuncture.

Santa Cruz and Cyborgs

To return to your own biography, tell us a bit about how and why you left Hopkins for Santa Cruz. 

Nancy Hartsock and I applied for a feminist theory job in the History of Consciousness department at UC Santa Cruz together. We wanted to share it. Everybody assumed we were lovers, which we weren’t, ever. We were told by the search committee that they couldn’t consider a joint application because they had just gotten this job okayed and it was the first tenured position in feminist theory in the country. They didn’t want to do anything further to jeopardize it. Nancy ended up deciding that she wanted to stay in Baltimore anyway, so I applied solo and got the job. And I was fired from Hopkins and hired by Santa Cruz in the same week — and for exactly the same papers.

What were the papers?

The long one was called “Signs of Dominance.” It was from a Marxist feminist perspective, and it was regarded as too political. Even though it appeared in a major journal, the person in charge of my personnel case at Hopkins told me to white it out from my CV. 

The other one was a short piece on [the poet and novelist] Marge Piercy and [feminist theorist] Shulamith Firestone in Women: a Journal of Liberation. And I was told to white that out, too. Those two papers embarrassed my colleagues and they were quite explicit about it, which was kind of amazing. Fortunately, the people at History of Consciousness loved those same papers, and the set of commitments that went with them. 

You arrived in Santa Cruz in 1980, and it was there that you wrote the Cyborg Manifesto. Tell us a bit about its origins.

It had a very particular birth. There was a journal called the Socialist Review, which had formerly been called Socialist Revolution. Jeff Escoffier, one of the editors, asked five of us to write no more than five pages each on Marxist feminism, and what future we anticipated for it. 

This was just after the election of Ronald Reagan. The future we anticipated was a hard right turn. It was the definitive end of the 1960s. Around the same time, Jeff asked me if I would represent Socialist Review at a conference of New and Old Lefts in Cavtat in Yugoslavia [now Croatia]. I said yes, and I wrote a little paper on reproductive biotechnology. A bunch of us descended on Cavtat, and there were relatively few women. So we rather quickly found one another and formed alliances with the women staff who were doing all of the reproductive labor, taking care of us. We ended up setting aside our papers and pronouncing on various feminist topics. It was really fun and quite exciting. 

Out of that experience, I came back to Santa Cruz and wrote the Cyborg Manifesto. It turned out not to be five pages, but a whole coming to terms with what had happened to me in those years from 1980 to the time it came out in 1985.

The manifesto ended up focusing a lot on cybernetics and networking technologies. Did this reflect the influence of nearby Silicon Valley? Were you close with people working in those fields?

It’s part of the air you breathe here. But the real tech alliances in my life come from my partner Rusten and his friends and colleagues, because he worked as a freelance software designer. He did contract work for Hewlett Packard for years. He had a long history in that world: when he was only fourteen, he got a job programming on punch cards for companies in Seattle. 

The Cyborg Manifesto was the first paper I ever wrote on a computer screen. We had an old HP-86. And I printed it on one of those daisy-wheel printers. One I could never get rid of, and nobody ever wanted. It ended up in some dump, God help us all.

The Cyborg Manifesto had such a tremendous impact, and continues to. What did you make of its reception?

People read it as they do. Sometimes I find it interesting. But sometimes I just want to jump into a foxhole and pull the cover over me. 

In the manifesto, you distinguish yourself from two other socialist feminist positions. The first is the techno-optimist position that embraces aggressive technological interventions in order to modify human biology. This is often associated with Shulamith Firestone’s book The Dialectic of Sex (1970), and in particular her proposal for “artificial wombs” that could reproduce humans outside of a woman’s body.

Yes, although Firestone gets slotted into a quite narrow, blissed-out techno-bunny role, as if all her work was about reproduction without wombs. She is remembered for one technological proposal, but her critique of the historical materialist conditions of mothering and reproduction was very deep and broad.

You also make some criticisms of the ideas associated with Italian autonomist feminists and the Wages for Housework campaign. You suggest that they overextend the category of “labor.”

Wages for Housework was very important. And I’m always in favor of working by addition not subtraction. I’m always in favor of enlarging the litter. Let’s watch the attachments and detachments, the compositions and decompositions, as the litter proliferates. Labor is an important category with a strong history, and Wages for Housework enlarged it.

But in thinkers with Marxist roots, there’s also a tendency to make the category of labor do too much work. A great deal of what goes on needs to be thickly described with categories other than labor — or in interesting kinds of entanglement with labor. 

What other categories would you want to add?

Play is one. Labor is so tied to functionality, whereas play is a category of non-functionality. 

Play captures a lot of what goes on in the world. There is a kind of raw opportunism in biology and chemistry, where things work stochastically to form emergent systematicities. It’s not a matter of direct functionality. We need to develop practices for thinking about those forms of activity that are not caught by functionality, those which propose the possible-but-not-yet, or that which is not-yet but still open. 

It seems to me that our politics these days require us to give each other the heart to do just that. To figure out how, with each other, we can open up possibilities for what can still be. And we can’t do that in in a negative mood. We can’t do that if we do nothing but critique. We need critique; we absolutely need it. But it’s not going to open up the sense of what might yet be. It’s not going to open up the sense of that which is not yet possible but profoundly needed.

The established disorder of our present era is not necessary. It exists. But it’s not necessary. 

Playing Against Double Death

What might some of those practices for opening up new possibilities look like?

Through playful engagement with each other, we get a hint about what can still be and learn how to make it stronger. We see that in all occupations. Historically, the Greenham Common women were fabulous at this. [Eds.: The Greenham Common Women’s Peace Camp was a series of protests against nuclear weapons at a Royal Air Force base in England, beginning in 1981.] More recently, you saw it with the Dakota Access Pipeline occupation. 

The degree to which people in these occupations play is a crucial part of how they generate a new political imagination, which in turn points to the kind of work that needs to be done. They open up the imagination of something that is not what [the ethnographer] Deborah Bird Rose calls “double death” — extermination, extraction, genocide. 

Now, we are facing a world with all three of those things. We are facing the production of systemic homelessness. The way that flowers aren’t blooming at the right time, and so insects can’t feed their babies and can’t travel because the timing is all screwed up, is a kind of forced homelessness. It’s a kind of forced migration, in time and space. 

This is also happening in the human world in spades. In regions like the Middle East and Central America, we are seeing forced displacement, some of which is climate migration. The drought in the Northern Triangle countries of Central America — Honduras, Guatemala, El Salvador — is driving people off their land. 

So it’s not a humanist question. It’s a multi-kind and multi-species question.

In the Cyborg Manifesto, you use the ideas of “the homework economy” and the “integrated circuit” to explore the various ways that information technology was restructuring labor in the early 1980s to be more precarious, more global, and more feminized. Do climate change and the ecological catastrophes you’re describing change how you think about those forces? 

Yes and no. The theories that I developed in that period emerged from a particular historical conjuncture. If I were mapping the integrated circuit today, it would have different parameters than the map that I made in the early 1980s. And surely the questions of immigration, exterminism, and extractivism would have to be deeply engaged. The problem of rebuilding place-based lives would have to get more attention.

The Cyborg Manifesto was written within the context of the hard-right turn of the 1980s. But the hard-right turn was one thing; the hard-fascist turn of the late 2010s is another. It’s not the same as Reagan. The presidents of Colombia, Hungary, Brazil, Egypt, India, the United States — we are looking at a new fascist capitalism, which requires reworking the ideas of the early 1980s for them to make sense.

So there are continuities between now and the map I made then, a lot of continuities. But there are also some pretty serious inflection points, particularly when it comes to developments in digital technologies that are playing into the new fascism.

Could you say more about those developments?

If the public-private dichotomy was old-fashioned in 1980, by 2019 I don’t even know what to call it. We have to try to rebuild some sense of a public. But how can you rebuild a public in the face of nearly total surveillance? And this surveillance doesn’t even have a single center. There is no eye in the sky.

Then we have the ongoing enclosure of the commons. Capitalism produces new forms of value and then encloses those forms of value — the digital is an especially good example of that. This involves the monetization of practically everything we do. And it’s not like we are ignorant of this dynamic. We know what’s going on. We just don’t have a clue how to get a grip on it. 

One attempt to update the ideas of the Cyborg Manifesto has come from the “xenofeminists” of the international collective Laboria Cuboniks. I believe some of them have described themselves as your “disobedient daughters.”

Overstating things, that’s not my feminism.

Why not?

I’m not very interested in those discussions, frankly. It’s not what I’m doing. It’s not what makes me vital now. In a moment of ecological urgency, I’m more engaged in questions of multispecies environmental and reproductive justice. Those questions certainly involve issues of digital and robotic and machine cultures, but they aren’t at the center of my attention.

What is at the center of my attention are land and water sovereignty struggles, such as those over the Dakota Access Pipeline, over coal mining on the Black Mesa plateau, over extractionism everywhere. My attention is centered on the extermination and extinction crises happening at a worldwide level, on human and nonhuman displacement and homelessness. That’s where my energies are. My feminism is in these other places and corridors.

Do you still think the cyborg is still a useful figure?

I think so. The cyborg has turned out to be rather deathless. Cyborgs keep reappearing in my life as well as other people’s lives. 

The cyborg remains a wily trickster figure. And, you know, they’re also kind of old-fashioned. They’re hardly up-to-the‑minute. They’re rather klutzy, a bit like R2-D2 or a pacemaker. Maybe the embodied digitality of us now is not especially well captured by the cyborg. So I’m not sure. But, yeah, I think cyborgs are still in the litter. I just think we need a giant bumptious litter whelped by a whole lot of really badass bitches — some of whom are men!

Mourning Without Despair

You mentioned that your current work is more focused on environmental issues. How are you thinking about the role of technology in mitigating or adapting to climate change — or fighting extractivism and extermination?

There is no homogeneous socialist position on this question. I’m very pro-technology, but I belong to a crowd that is quite skeptical of the projects of what we might call the “techno-fix,” in part because of their profound immersion in technocapitalism and their disengagement from communities of practice. 

Those communities may need other kinds of technologies than those promised by the techno-fix: different kinds of mortgage instruments, say, or re-engineered water systems. I’m against the kind of techno-fixes that are abstracted from place and tied up with huge amounts of technocapital. This seems to include most geoengineering projects and imaginations. 

So when I see massive solar fields and wind farms I feel conflicted, because on the one hand they may be better than fracking in Monterey County — but only maybe. Because I also know where the rare earth minerals required for renewable energy technologies come from and under what conditions. We still aren’t doing the whole supply-chain analysis of our technologies. So I think we have a long way to go in socialist understanding of these matters. 

One tendency within socialist thought believes that socialists can simply seize capitalist technology and put it to different purposes — that you take the forces of production, build new relations around them, and you’re done. This approach is also associated with a Promethean, even utopian approach to technology. Socialist techno-utopianism has been around forever, but it has its own adherents today, such as those who advocate for “Fully Automated Luxury Communism.” I wonder how you see that particular lineage of socialist thinking about technology.

I think very few people are that simplistic, actually. In various moments we might make proclamations that come down that way. But for most people, our socialisms, and the approaches with which socialists can ally, are richer and more varied. 

When you talk to the Indigenous activists of the Black Mesa Water Coalition, for example, they have a complex sense around solar arrays and coal plants and water engineering and art practices and community movements. They have very rich articulated alliances and separations around all of this. 

Socialists aren’t the only ones who have been techno-utopian, of course. A far more prominent and more influential strand of techno-utopianism has come from the figures around the Bay Area counterculture associated with the Whole Earth Catalog, in particular Stewart Brand, who went on to play important intellectual and cultural roles in Silicon Valley.

They are not friends. They are not allies. I’m avoiding calling them enemies because I’m leaving open the possibility of their being able to learn or change, though I’m not optimistic. I think they occupy the position of the “god trick.” [Eds.: The “god trick” is an idea introduced by Haraway that refers to the traditional view of objectivity as a transcendent “gaze from nowhere.”] I think they are blissed out by their own privileged positions and have no idea what their own positionality in the world really is. And I think they cause a lot of harm, both ideologically and technically. 

How so?

They get a lot of publicity. They take up a lot of the air in the room. 

It’s not that I think they’re horrible people. There should be space for people pushing new technologies. But I don’t see nearly enough attention given to what kinds of technological innovation are really needed to produce viable local and regional energy systems that don’t depend on species-destroying solar farms and wind farms that require giant land grabs in the desert.

The kinds of conversations around technology that I think we need are those among folks who know how to write law and policy, folks who know how to do material science, folks who are interested in architecture and park design, and folks who are involved in land struggles and solidarity movements. I want to see us do much savvier scientific, technological, and political thinking with each other, and I want to see it get press. The Stewart Brand types are never going there. 

Do you see clear limitations in their worldviews and their politics?

They remain remarkably humanist in their orientation, in their cognitive apparatus, and in their vision of the world. They also have an almost Peter Pan quality. They never quite grew up. They say, “If it’s broken, fix it.” 

This comes from an incapacity to mourn and an incapacity to be finite. I mean that psychoanalytically: an incapacity to understand that there is no status quo ante, to understand that death and loss are real. Only within that understanding is it possible to open up to a kind of vitality that isn’t double death, that isn’t extermination, and which doesn’t yearn for transcendence, yearn for the fix.

There’s not much mourning with the Stewart Brand types. There’s not much felt loss of the already disappeared, the already dead — the disappeared of Argentina, the disappeared of the caravans, the disappeared of the species that will not come back. You can try to do as much resurrection biology as you want to. But any of the biologists who are actually involved in the work are very clear that there is no resurrection. 

You have also been critical of the Anthropocene, as a proposed new geological epoch defined by human influence on the earth. Do you see the idea of the Anthropocene as having similar limitations?

I think the Anthropocene framework has been a fertile container for quite a lot, actually. The Anthropocene has turned out to be a rather capacious territory for incorporating people in struggle. There are a lot of interesting collaborations with artists and scientists and activists going on.

The main thing that’s too bad about the term is that it perpetuates the misunderstanding that what has happened is a human species act, as if human beings as a species necessarily exterminate every planet we dare to live on. As if we can’t stop our productive and reproductive excesses. 

Extractivism and exterminationism are not human species acts. They come from a situated historical conjuncture of about five hundred years in duration that begins with the invention of the plantation and the subsequent modeling of industrial capitalism. It is a situated historical conjuncture that has had devastating effects even while it has created astonishing wealth. 

To define this as a human species act affects the way a lot of scientists think about the Anthropocene. My scientist colleagues and friends really do continue to think of it as something human beings can’t stop doing, even while they understand my historical critique and agree with a lot of it. 

It’s a little bit like the relativism versus objectivity problem. The old languages have a deep grip. The situated historical way of thinking is not instinctual for Western science, whose offspring are numerous. 

Are there alternatives that you think could work better than the Anthropocene?

There are plenty of other ways of thinking. Take climate change. Now, climate change is a necessary and essential category. But if you go to the circumpolar North as a Southern scientist wanting to collaborate with Indigenous people on climate change — on questions of changes in the sea ice, for example, or changes in the hunting and subsistence base — the limitations of that category will be profound. That’s because it fails to engage with the Indigenous categories that are actually active on the ground. 

There is an Inuktitut word, “sila.” In an Anglophone lexicon, “sila” will be translated as “weather.” But in fact, it’s much more complicated. In the circumpolar North, climate change is a concept that collects a lot of stuff that the Southern scientist won’t understand. So the Southern scientist who wants to collaborate on climate change finds it almost impossible to build a contact zone. 

Anyway, there are plenty of other ways of thinking about shared contemporary problems. But they require building contact zones between cognitive apparatuses, out of which neither will leave the same as they were before. These are the kinds of encounters that need to be happening more.

A final question. Have you been following the revival of socialism, and socialist feminism, over the past few years? 

Yes.

What do you make of it? I mean, socialist feminism is becoming so mainstream that even Harper’s Bazaar is running essays on “emotional labor.”

I’m really pleased! The old lady is happy. I like the resurgence of socialism. For all the horror of Trump, it has released us. A whole lot of things are now being seriously considered, including mass nonviolent social resistance. So I am not in a state of cynicism or despair.

An excerpted version of this interview originally appeared in The Guardian.

https://logicmag.io/nature/a-giant-bumptious-litter/