Arquivo da tag: Ficção científica

An Astrobiologist Asks a Sci-fi Novelist How to Survive the Anthropocene (Nautilus)


Humans will have a chance to prove their adaptability as the Earth undergoes unprecedented challenges in the Anthropocene, an era named after our impact on the biosphere. To learn what it takes to survive far into the future, astrobiologist David Grinspoon interviewed Kim Stanley Robinson, a writer regarded as one of the most important science fiction and political novelists alive today. Robinson’s recent book, 2312, permits humans to survive near-extinction and populate the solar system over the course of 300 years.

We decided to kick off the conversation with a 2312 excerpt from the chapter, “Earth, The Planet of Sadness:”

“Clean tech came too late to save Earth from the catastrophes of the early Anthropocene. It was one of the ironies of their time that they could radically change the surfaces of the other planets, but not Earth. The methods they employed in space were almost all too crude and violent. Only with the utmost caution could they tinker with anything on Earth, because everything there was so tightly balanced and interwoven.”


David Grinspoon: Humans in 2312 can transverse the universe, but they could not save the Earth from environmental devastation. Do you think our intelligence just isn’t adaptive enough to learn how to live sustainably?

Kim Stanley Robinson: Human intelligence is adaptive. It’s given us enormous powers in the physical world thus far. With it, we’ve augmented our senses by way of technologies like microscopes, telescopes, and sensors, such that we have seen things many magnitudes smaller and larger than we could see with unaided senses, as well as things outside of our natural sensory ranges.

But our intelligence has also led to unprecedented problems as our planet reaches its carrying capacity. Is intelligence adaptive enough to adjust to the calamities of its own success? This situation is a completely new thing in history—which means that no one can answer the question now.

DG: What do you think it would take for us to persist?

KSR: I think we can make it through this current, calamitous time period. I envision a two-part process. First, we need to learn what to do in ecological terms. That sounds tricky, but the biosphere is robust and we know a lot about it, so really it’s a matter of refining our parameters; i.e. deciding how many of us constitutes a carrying capacity given our consumption, and then figuring out the technologies and lifestyles that would allow for that carrying capacity while also allowing ecosystems to thrive. We have a rough sense of these parameters now.

The second step is the political question: It’s a matter of self-governance. We’d need to act globally, and that’s obviously problematic. But the challenge is not really one of intellect. It’s the ability to enforce a set of laws that the majority would have to agree on and live by, and those who don’t agree would have to follow.

So this isn’t a question of reconciling gravity with quantum mechanics, or perceiving the strings of string theory. Instead it involves other aspects of intelligence, like sociability, long-range planning, law, and politics. Maybe these kinds of intelligence are even more difficult to develop, but in any case, they are well within our adaptive powers.

DG: Do you think the spread of Internet access can help us forge a multi-generational global identity that might drive change? It wouldn’t be the first time that technological advancements massively transformed humankind’s history.

KSR: The Internet may be helpful but we’ll need more than global awareness. We need a global economic system that is designed specifically for sustainability. We already have a global economic system in the form of institutions like the World Bank and the International Monetary Fund. Together, their agreements make up a comprehensive system. But right now, this system cheats future generations by systematically underpricing the true costs of our exploitation of the biosphere. It sets the prices of the Earth’s natural resources by establishing what is basically the aggregation of supplies and demands. But this process is biased toward pricing things lower and lower, because of pressure from buyers and the need for sellers to stay in business. As a result, sellers sell their products for less than they cost to make, which should lead to bankruptcy for the seller, but it doesn’t because parts of the costs have been shifted onto future generations to pay. When practiced systematically it becomes a kind of multi-generational Ponzi scheme, and leads to the mass extinction event of the early Anthropocene, which we have already started.

What we want is to remember that our system is constructed for a purpose, and so in need of constant fixing and new tries.

Measurements used by the Global Footprint Network and a famous study led by Robert Costanza have shown that the “natural services” we use can be assigned a dollar amount that is much greater than the entire human economy, and that we overdraw these resources and destroy their function. So in effect, we are eating our future.

And I think it’s going to be hard to change the global economic system quickly. There’s a term for that among economists called path dependence. For example, we have a path dependency on carbon that we could shift over to a cleaner and cheaper—cheaper, if you take into account the true costs to the planet—power and transport system. But the pace of technological change for something that big might be up to a century because we’re constrained by path dependence. And I don’t think we have that much time.

DG: So, are we talking evolution or revolution? Do we need to escape from path dependence and start anew? 

KSR: No, we have to alter the system we already have, because like an animal with evolutionary constraints, we can’t change everything and start from scratch. But what we could do is reconstruct regulations on the existing global economic system. For this, we would need to wrench capitalism so that the global rules of the World Bank, etc., required ecological sustainability as their main criterion. That way, prices would shift to match their true costs. Burning carbon would cost more than it does now, and clean energy would become cheaper than burning carbon. This would address the most pressing part of our crisis, but finding a replacement for the market to allocate goods and price them is not easy.

As we enter this new mass extinction event, at some point there is going to be a global civilization response that will try to deal with it: try to cope, survive, and repair landscapes and ecosystems. The scientific method and democratic politics are going to be the crucial tools, I’d say. For them to work, we need universal justice and education because we need active and well-educated citizens who are empowered and live at adequacy.

From where we are now, this looks pretty hard, but I think that’s because capitalism as we know it is represented as natural, entrenched, and immutable. None of that is true. It’s a political order and political orders change. What we want is to remember that our system is constructed for a purpose, and so in need of constant fixing and new tries.

DG: I often wonder if civilizations elsewhere in the universe have made it through times like the ones we’re facing now. Astrobiologists think the likelihood of there being extraterrestrial intelligent life elsewhere in the universe is high. Our next question is if they’re out there, why haven’t they made themselves obvious to us? One recently suggested answer to this puzzle, known as the Fermi Paradox, is that unsustainable growth is an unavoidable property of civilizations, so they self-destruct. 

KSR: The Fermi Paradox poses a really interesting question, but I think it’s unanswerable. My feeling is, the universe is too big, and life too planet-specific for intelligent life forms to communicate with each other, except for by accident and very rarely. So perhaps they’re out there, and perhaps they’ve made it through something like our current era, but we wouldn’t know. I am just making assumptions based on the data, and telling a science fiction story. But so is everyone else talking about this issue.

DG: If you don’t want to speculate on outer space, do you think civilizations in science fiction offer any examples of long-lived societies?

KSR: I like to think so. In Ursula K. Le Guin’s The Dispossessed, a planetary society runs as a kind of giant anarchist collective. Decisions are made in long, consensus-building sessions, and the economy appears to be a matter of voluntary contributions of work. It’s a culture of minimal need and use, such that everyone lives at adequacy and no one consumes very much, as this is regarded as gross behavior.

Iain Banks’s Culture series describes a far-future, post-scarcity society in which the technological power available to civilization is such that basic needs are always more than satisfied. However, they have other sorts of problems that have to do with the interactions between different societies.

In my novel, 2312, the economy is in some ways a funhouse mirror portrayal of our world. One of the civilizations—called the Mondragon after the Basque city in Spain that runs its economy as a set of nested co-ops—provides for everyone’s basic needs as a kind of public utility district service. Then there is a more free-market capitalist world of exchange of luxuries; these arrangements are loosely grouped as “above and beyonds.” That’s one image of a possible future, sustainable economy. However, if you include all the civilizations on Earth and in space in 2312, there remains a steep inequality gradient with most of the poor on Earth.

DG: So you’re saying that even if we learn to live sustainably, we may still have serious poverty?

KSR: Actually, 2312 is not so much a prediction of a future but rather a symbolic portrait of now. Poverty is mostly political in nature because the technological ability to create adequacy for all living humans exists in 2312 (as it does now) but it has never been made the “civilizational project.” In the symbolic sense, people have already begun a process of speciation, in that the most prosperous on Earth live on average decades longer than the poorest people, and can change gender to an extent. Instead, the main division between people is height. By dividing people into the “shorts” and the “talls,” I was alluding to the idea that we are becoming separate sub-species based on class. And by describing how the “shorts” have many advantages, I was trying to point out that the assumption that bigger is better is false in many situations.


DG: Another interesting detail in 2312 is that biomes can be made from scratch on asteroids, according to a set of directions that reads like a recipe. But you warn of a potential danger at an early stage in the process: “Once you get your marsh going, you may fall in love with it.” Why is that a risk?

KSR: It’s a bit of a joke. Some of the ecologists I spoke to when I was writing the book told me that marshes were their favorite biomes because of their fecundity. As someone who likes the high Sierra I was surprised by this, and learned to look at the landscape differently. It also made me consider how all biomes are beautiful, depending on how you look at them. So being urged to move on to drier biomes is then part of that idea, but it’s not a very serious one. I have to admit that a lot of what is in 2312 is me fooling around. I think this is one thing that has made the book attractive to people, the sense of play, and that our landscapes and cities as artworks with aesthetic pleasures.

DG: Even though the Earth is a mess in 2312, the heroine of the book falls in love with the sky as seen on Earth, and the wolves that have been re-introduced. Do you think that people will always retain a connection to this planet despite its flaws? 

KSR: Yes, this was a point I was trying to make. I have this intuition that because we evolved on Earth, and are, as individuals, part of a complex network of living and natural forces, that we are biomes in effect. The result is that we will never be able to stay healthy if away from Earth for long. We carry the Earth within us, and by the same measure, I think we’ll always need the Earth around us to replenish ourselves.

David Grinspoon is an astrobiologist working with several interplanetary spacecrafts. In 2013, he was named the inaugural Chair of Astrobiology at the Library of Congress. He tweets at @DrFunkySpoon.

This article was originally published in our “Turbulence” issue in July, 2014.


As previsões de Isaac Asimov para 2014, 50 anos atrás (Pragmatismo Político)

03/JAN/2014 ÀS 18:42

Escritor e professor Isaac Asimov fez, há 50 anos, surpreendentes previsões de como seria o mundo em 2014

isaac asimov previsões 2014

Professor Isaac Asimov fez impressionantes previsões para 2014… há 50 anos (Reprodução)

Em 1964, durante a Feira Mundial de Nova York, o New York Times convidou o escritor de ficção científica e professor de bioquímica Isaac Asimov a fazer previsões de como seria o mundo 50 anos depois, ou seja, este ano. Asimov escreveu mais de 500 trabalhos, entre romances, contos, teses e artigos e sempre se caracterizou por fazer projeções acuradas sobre o futuro. As previsões do escritor, que morreu em 1991, são surpreendentes.


Asimov prevê que os equipamentos de culinária pouparão a humanidade de fazer trabalhos tediosos. “As cozinhas estão equipadas para fazer “auto-refeições”. “Almoços e jantares serão feitos com comidas semi-preparadas, que poderão ser conservadas em freezer. Em 2014, as cozinhas terão equipamentos capazes de preparar uma refeição individual em alguns poucos segundos”. Só faltou mesmo ele usar a palavra “microondas”.


O escritor previu um mundo repleto de computadores capazes de fazer as mais complexas tarefas. “Em 2014, haverá mini computadores instalados em robôs”, escreve ele, no que parece ser uma alusão aos chips. E garantiu que será possível fazer traduções com uma dessas máquinas, como se previsse a existência do Google Translator.


As ligações telefônicas terão imagem e voz, garantiu Asimov em seu texto. “As telas serão usadas não apenas para ver pessoas, mas também para estudar documentos e fotos e ler livros”. E prevê que satélites em órbita tornarão possível fazer conexões telefônicas para qualquer lugar da Terra e até mesmo “saber o clima na Antártica”. Mas em Terra haverá outras soluções. “A conexão terá que ser feita em tubos de plástico, para evitar a interferência atmosférica”, escreve ele, como se já conhecesse a fibra ótica.


Asimov previu que em 2014 o cinema seria apresentando em 3-D, mas garantiu que algumas coisas nunca mudariam: “Continuarão a existir filas de três horas para ver o filme”.


Ele previu que já existiriam algumas usinas experimentais produzindo energia com a fusão nuclear. Errou. Mas acertou quando vaticinou a existência de baterias recarregáveis para alimentar muitos aparelhos elétricos de nossa vida cotidiana. Mais ainda: “Uma vez usadas, as baterias só poderão ser recolhidas por agentes autorizados pelos fabricantes” — o que deveria acontecer, mas nem sempre acontece.


Asimov erra feio nas suas previsões relacionadas ao transporte.

Ele acreditou que carros e caminhões pudessem circular sem encostar no chão ou água, deslizando a uma altura de “um ou dois metros”. E que não haveria mais necessidade de construir pontes, “já que os carros seriam capazes de circular sobre as águas, mas serão desencorajados a fazer isso pelas autoridades”.


Para o escritor, em 2014 o homem já terá chegado a Marte com espaçonaves não tripuladas, embora “já estivesse sendo planejada uma expedição com pessoas e até a formação de uma colônia marciana”. O que nos faz lembrar da proposta pública de uma viagem a Marte só de ida, feita recentemente, para formar a primeira colônia no planeta.


Asimov cita a provável existência de “televisões de parede”, como se pudesse prever as telas planas, mas acredita que os aparelhos serão substituídos por cubos capazes de fazer transmissões em 3-D, visíveis de qualquer ângulo.


O escritor previu que a população mundial seria de 6,5 bilhões em 2014 (já passou dos 7 bilhões) e que áreas desérticas e geladas seriam ocupadas por cidades — o que não é exatamente errado. Mas preconizou, também, a má divisão de renda: “Uma grande parte da humanidade não terá acesso à tecnologia existente e, embora melhor do que hoje, estará muito defasada em relação às populações mais privilegiados do mundo. Nesse sentido, andaremos para trás”, escreve ele.


“Em 2014 será comum a ‘carne falsa’, feita com vegetais, e que não será exatamente ruim, mas haverá muita resistência a essa inovação”, escreve Asimov, referindo-se provavelmente aos hambúrgueres de soja.

Expectativa de vida

O escritor preconizou problemas devido à super população do planeta, atribuindo-a aos avanços da medicina: “O uso de aparelhos capazes de substituir o coração e outros órgãos vai elevar a expectativa de vida, em algumas partes do planeta, a 85 anos de idade”. A média mundial subiu de 52 anos em 1964 para 70 anos em 2012. Em alguns países, como Japão, Suíça e Austrália, já está em 82 anos.


“As escolas do futuro”, escreve Asimov, “apresentarão aulas em circuitos fechados de TV e todos os alunos aprenderão os fundamentos da tecnologia dos computadores”. O que ele não previu foi a possibilidade de os alunos ensinarem os professores quando se trata de uso de computadores — como, aliás, ocorre em algumas escolas públicas brasileiras.


Asimov previu uma população entediada, como sinal de uma doença que “se alastra a cada ano, aumentando de intensidade, o que terá consequência mentais, emocionais e sociais”. Depressão? “Ouso dizer”, prossegue ele, “que a psiquiatria será a especialidade médica mais importante em 2014. Aqueles poucos que puderem se envolver em trabalhos mais criativos formarão a elite da humanidade”.