Arquivo da tag: Botânica

Mudanças climáticas podem levar à exclusão de espécies arbóreas em áreas úmidas (INPA)

JC 5423, 24 de maio de 2016

Alterações na composição de espécies vegetais poderão trazer implicações para toda a cadeia alimentar, incluindo o homem

Cheias e secas extremas e subsequentes, como essas que os rios da Amazônia vêm sofrendo nas duas últimas décadas, podem levar à exclusão de espécies de árvores e à colonização por outras espécies menos tolerantes à inundação.

É o que apontam estudos desenvolvidos por pesquisadores associados ao Grupo Ecologia, Monitoramento e Uso Sustentável de Áreas Úmidas (Maua) do Instituto Nacional de Pesquisas da Amazônia (Inpa/MCTI), em Manaus, que participa, desde 2013, do Programa de Pesquisas Ecológicas de Longa Duração (Peld), por meio do Peld-Maua.

Durante a década de 1970, por exemplo, os níveis máximos anuais do rio Negro ficaram alguns metros acima do valor médio da enchente, e a descida das águas não foi intensa, resultando na inundação de várias populações de plantas durante anos consecutivos. Isso causou a exclusão de muitas espécies arbustivas e arbóreas nas baixas topografias de igapós na região da Amazônia Central, como é o caso de macacarecuia (Eschweilera tenuifolia).

“Acredita-se que esses fenômenos podem ser consequência das mudanças climáticas em curso, mas podem também derivar de variações naturais do ciclo hidrológico. Os estudos realizados no âmbito do Peld-Maua visam confirmar a origem desses fenômenos utilizando informações sobre o crescimento da vegetação”, adianta a coordenadora do Peld-Maua, a pesquisadora do Inpa Maria Teresa Fernandez Piedade.

Anos de secas ou cheias consecutivas podem ultrapassar a capacidade adaptativa das espécies de árvores, especialmente de populações estabelecidas nos extremos do ótimo de distribuição no gradiente inundável (composição de diferentes níveis de inundação a que estão sujeitas as áreas alagáveis).

Segundo Piedade, como a vegetação sustenta a fauna desses ambientes, mudanças na composição de espécies vegetais poderão trazer implicações para toda a cadeia alimentar, incluindo o homem. “A vegetação arbórea das áreas alagáveis amazônicas é bem adaptada à dinâmica anual de cheias e vazantes”, destaca a pesquisadora.

Para ela, determinar o grau de tolerância a períodos extremos das espécies de árvores desses ambientes e de sua fauna associada, como os peixes e roedores, e conhecer sua reação com a dinâmica de alternância entre fases inundadas e não inundadas normais e extremas é um grande desafio e se constitui na base para seu uso sustentável e preservação.

Segundo Piedade, as áreas úmidas (várzeas, igapós, buritizais e outros tipos) cobrem cerca de 30% da região amazônica e são de fundamental importância ecológica e econômica. Ela explica que na várzea, múltiplas atividades econômicas são tradicionalmente desenvolvidas, como a pesca e a agricultura familiar, enquanto que nos igapós, por serem mais pobres em nutrientes e em espécies de plantas e animais, menos atividades econômicas são praticadas. Já nas campinas/campinaranas alagáveis essas atividades são ainda mais reduzidas.

“A ecologia, o funcionamento e as limitações para determinadas práticas econômicas nas várzeas são bastante conhecidas, mas nos igapós de água pretas e nas campinas/campinaranas alagáveis tais aspectos ainda são pouco estudados”, diz Piedade. “Embora se saiba que esses ambientes são frágeis, aumentar e disponibilizar informações sobre eles é fundamental”, acrescenta.

Peld-Mauá

Com o título “Monitoramento e modelagem de dois grandes ecossistemas de áreas úmidas amazônicas em cenários de mudanças climáticas”, o Peld-Maua é um projeto financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), e também conta com recursos da Fundação de Amparo à Pesquisa do Estado do Amazonas (Fapeam). Insere-se no plano de ação “Ciência, Tecnologia e Inovação para Natureza e Clima”, do MCTI.

O Programa Peld foca no estabelecimento de sítios de pesquisa permanentes em diversos ecossistemas do País, integrados em redes para o desenvolvimento e o acompanhamento de pesquisas ecológicas de longa duração. Atualmente, existem 31 sítios de pesquisa vigentes.

O Peld-Maua é gerenciado pelo Inpa, em Manaus. Tem como vice-coordenador o pesquisador do Inpa, Jochen Schöngart; e como coordenador do Banco de Dados o pesquisador Florian Wittmann, do Departamento de Biogeoquímica do Instituto Max-Planck de Química, com sede em Mainz, na Alemanha.

A coordenadora do Peld-Maua explica que as atividades tiveram início há três anos. “Na primeira fase, que será completada agora em 2016, o Peld-Maua priorizou estudos em um ambiente de igapó e outro de campinarana alagável, mas espera-se que os estudos tenham continuidade e sejam expandidos para outras tipologias alagáveis amazônicas”, diz Piedade.

O Peld-Maua desenvolve estudos nas áreas de inundação das florestas de igapó no Parque Nacional do Jaú (Parna Jaú) – Unidade de Conservação localizada entre os municípios de Novo Airão e Barcelos, no Amazonas –, e ao longo dos gradientes de profundidade do lençol freático das florestas de campinas/campinaranas na Reserva de Desenvolvimento Sustentável (RDS) do Uatumã, situada entre os municípios de São Sebastião do Uatumã e Itapiranga, também no Amazonas.

Conforme Piedade, diante da conectividade entre os ambientes alagáveis e as formações contíguas de terra-firme ou outras, os sítios de estudos foram escolhidos em ambientes onde os gradientes podem ser também avaliados. “Isso aumenta as possibilidades de trabalhos comparativos”, ressalta.

O Peld-Maua tem por objetivo relacionar a estrutura, composição florística e dinâmica de plantas que produzem sementes (fanerógamas) de dois ecossistemas de áreas úmidas na Amazônia Central com fatores do solo e da disponibilidade de água (hidro-edáficos), por meio do monitoramento em longo prazo para entender possíveis impactos e respostas da vegetação frente a mudanças dos regimes pluviométricos e hidrológicos.

O programa, até o momento, já permitiu a realização de cinco dissertações de mestrado e uma tese de doutorado. Além dos estudos já finalizados, estão em andamento dois pós-doutorados, seis doutorados e quatro mestrados. Quanto à formação de pessoal, dois bolsistas do Programa de Capacitação Institucional (PCI) concluíram suas atividades e dois estão realizando seus projetos, e dois bolsistas do programa de Bolsa de Fomento ao Desenvolvimento Tecnológico (DTI) e dois Pibic’s realizaram seus projetos junto ao Peld-Maua.

Inpa

Anúncios

Mushrooms can change the weather, scientists reveal (Telegraph UK)

The fungi can whip up winds that blow away their spores and help them disperse

Mushrooms can change the weather, scientists reveal

Magic Mushrooms? According to scientists, mushrooms can alter the moisture of the air around them, whipping up winds that blow away their spores and help them disperse Photo: ALAMY

By News agencies

1:49PM GMT 25 Nov 2013

Mushrooms have an extraordinary ability to control the weather, scientists have learned.

By altering the moisture of the air around them, they whip up winds that blow away their spores and help them disperse.

Plants use a variety of methods to spread seeds, including gravity, forceful ejection, wind, water and animals. Mushrooms have long been thought of as passive seed spreaders, releasing their spores and then relying on air currents to carry them.

But new research has shown that mushrooms are able to disperse their spores over a wide area even when there is not a breath of wind – by creating their own weather.

Scientists in the US used high-speed filming techniques and mathematical modelling to show how oyster and Shitake mushrooms release water vapour that cools the air around them, creating convection currents. This in turn generates miniature winds that lift their spores into the air.

The findings, presented at the annual meeting of the American Physical Society’s Division of Fluid Dynamics in Pittsburgh, suggest that mushrooms are far more than mechanical spore manufacturers.

”Our research shows that these ‘machines’ are much more complex than that: they control their local environments, and create winds where there were none in nature,” said lead scientist Professor Emilie Dressaire, from Trinity College in Hartford, Connecticut. ”That’s pretty amazing, but fungi are ingenious engineers.”

The scientists believe the same process may be used by all mushroom fungi, including those that cause diseases in plants, animals and humans.

A mushroom – or toadstool – is technically the fleshy, spore-bearing, fruiting body of a fungus.

Millions of spores, microscopic single-celled ”seeds”, may be produced by a single mushroom, at least a few of which are likely to land somewhere suitable for fungal growth.

More than 80 different types of wild edible mushroom grow in the UK, as well as many poisonous species.

One of the world’s deadliest mushrooms, the death cap, is a common sight in British woodland. Although pleasant tasting, just one ounce of the fungus is enough to kill.

How Vegetation Competes for Rainfall in Dry Regions (Science Daily)

Aug. 30, 2013 — The greater the plant density in a given area, the greater the amount of rainwater that seeps into the ground. This is due to a higher presence of dense roots and organic matter in the soil. Since water is a limited resource in many dry ecosystems, such as semi-arid environments and semi-deserts, there is a benefit to vegetation to adapt by forming closer networks with little space between plants. 

Vertical aerial view of a tiger bush plateau in Niger. Vegetation is dominated by Combretum micranthum and Guiera senegalensis. Image size : 5 x 5 km on the ground. Satellite image from the Declassified corona KH-4A national intelligence reconnaissance system, 1965-12-31. (Credit: Courtesy of the U.S. Geological Survey)

Hence, vegetation in semi-arid environments (or regions with low rainfall) self-organizes into patterns or “bands.” The pattern formation occurs where stripes of vegetation run parallel to the contours of a hill, and are interlaid with stripes of bare ground. Banded vegetation is common where there is low rainfall. In a paper published last month in the SIAM Journal on Applied Mathematics, author Jonathan A. Sherratt uses a mathematical model to determine the levels of precipitation within which such pattern formation occurs.

“Vegetation patterns are a common feature in semi-arid environments, occurring in Africa, Australia and North America,” explains Sherratt. “Field studies of these ecosystems are extremely difficult because of their remoteness and physical harshness; moreover there are no laboratory replicates. Therefore mathematical modeling has the potential to be an extremely valuable tool, enabling prediction of how pattern vegetation will respond to changes in external conditions.”

Several mathematical models have attempted to address banded vegetation in semi-arid environments, of which the oldest and most established is a system of partial differential equations, called the Klausmeier model.

The Klausmeier model is based on a water redistribution hypothesis, which assumes that rain falling on bare ground infiltrates only slightly; most of it runs downhill in the direction of the next vegetation band. It is here that rain water seeps into the soil and promotes growth of new foliage. This implies that moisture levels are higher on the uphill edge of the bands. Hence, as plants compete for water, bands move uphill with each generation. This uphill migration of bands occurs as new vegetation grows upslope of the bands and old vegetation dies on the downslope edge.

In this paper, the author uses the Klausmeier model, which is a system of reaction-diffusion-advection equations, to determine the critical rainfall level needed for pattern formation based on a variety of ecological parameters, such as rainfall, evaporation, plant uptake, downhill flow, and plant loss. He also investigates the uphill migration speeds of the bands. “My research focuses on the way in which patterns change as annual rainfall varies. In particular, I predict an abrupt shift in pattern formation as rainfall is decreased, which dramatically affects ecosystems,” says Sherratt. “The mathematical analysis enables me to derive a formula for the minimum level of annual rainfall for which banded vegetation is viable; below this, there is a transition to complete desert.”

The model has value in making resource decisions and addressing environmental concerns. “Since many semi-arid regions with banded vegetation are used for grazing and/or timber, this prediction has significant implications for land management,” Sherratt says. “Another issue for which mathematical modeling can be of value is the resilience of patterned vegetation to environmental change. This type of conclusion raises the possibility of using mathematical models as an early warning system that catastrophic changes in the ecosystem are imminent, enabling appropriate action (such as reduced grazing).”

The simplicity of the model allows the author to make detailed predictions, but more realistic models are required to further this work. “All mathematical models are a compromise between the complexity needed to adequately reflect real-world phenomena, and the simplicity that enables the application of mathematical methods. My paper concerns a relatively simple model for vegetation patterning, and I have been able to exploit this simplicity to obtain detailed mathematical predictions,” explains Sherratt. “A number of other researchers have proposed more realistic (and more complex) models, and corresponding study of these models is an important area for future work. The mathematical challenges are considerable, but the rewards would be great, with the potential to predict things such as critical levels of annual rainfall with a high degree of quantitative accuracy.”

Journal Reference:

  1. Jonathan A. Sherratt. Pattern Solutions of the Klausmeier Model for Banded Vegetation in Semiarid Environments V: The Transition from Patterns to DesertSIAM Journal on Applied Mathematics, 2013; 73 (4): 1347 DOI:10.1137/120899510