Dora Kaufman* – 11 Set 2020 – 10h30
Existem muitas críticas à esses sistemas, algumas justas outras nem tanto; o fato é que personalização, curadoria, clusterização, mecanismos de persuasão, nada disso é novo, cabe é investigar o que mudou com a IA (Foto: Thinkstock)
Os algoritmos de inteligência artificial (IA) atuam como curadores da informação, personalizando, por exemplo, as respostas nas plataformas de busca como Google e a seleção do que será publicado no feed de notícias de cada usuário do Facebook. O ativista Eli Pariser (The Filtre Bubble, 2011) reconhece a utilidade de sistemas de relevância ao fornecer conteúdo personalizado, mas alerta para os efeitos negativos da formação de “bolhas” ao reduzir a exposição à opiniões divergentes. Para Cass Sunstein (#republic, 2017), esses sistemas são responsáveis pelo aumento da polarização cultural e política pondo em risco a democracia. Existem muitas críticas à esses sistemas, algumas justas outras nem tanto; o fato é que personalização, curadoria, clusterização, mecanismos de persuasão, nada disso é novo, cabe é investigar o que mudou com a IA.
A personalização do discurso, por exemplo, remete à Aristóteles. A arte de conhecer o ouvinte e adaptar o discurso ao seu perfil, não para convencê-lo racionalmente, mas para conquistá-lo pelo “coração” é o tema da obra “Retórica”. Composta de três volumes, o Livro II é dedicado ao plano emocional listando as emoções que devem conter um discurso persuasivo: ira, calma, amizade, inimizade, temor, confiança, vergonha, desvergonha, amabilidade, piedade, indignação, inveja e emulação. Para o filósofo, todos, de algum modo, praticam a retórica na sustentação de seus argumentos. Essa obra funda as bases da retórica ocidental que, com seus mecanismos de persuasão, busca influenciar o interlocutor seja ele usuário, consumidor, cliente ou eleitor.
Cada modelo econômico tem seus próprios mecanismos de persuasão, que extrapolam motivações comerciais com impactos culturais e comportamentais. Na Economia Industrial, caracterizada pela produção e pelo consumo massivo de bens e serviços, a propaganda predominou como meio de convencimento nas decisões dos consumidores, inicialmente tratados como uma “massa” de indivíduos indistinguíveis. O advento das tecnologias digitais viabilizou a comunicação segmentada em função de características, perfis e preferências similares, mas ainda distante da hipersegmentação proporcionada pelas tecnologias de IA.
A hipersegmentação com algoritmos de IA é baseada na mineração de grandes conjuntos de dados (Big Data) e sofisticadas técnicas de análise e previsão, particularmente os modelos estatísticos de redes neurais/deep learning. Esses modelos permitem extrair dos dados informações sobre seus usuários e/ou consumidores e fazer previsões com alto grau de acurácia – desejos, comportamentos, interesses, padrões de pesquisa, por onde circulam, bem como a capacidade de pagamento e até o estado de saúde. Os algoritmos de IA transformam em informação útil a imensidão de dados gerados nas movimentações online.
Na visão de Shoshana Zuboff (The Age of Surveillance Capitalism, 2019), a maior ameaça não está nos dados produzidos voluntariamente em nossas interações nos meios digitais (“dados consentidos”), mas nos “dados residuais” sob os quais os usuários de plataformas online não exercem controle. Até 2006, os dados residuais eram desprezados, com a sofisticação dos modelos preditivos de IA esses dados tornaram-se valiosos: a velocidade de digitalização, os erros gramaticais cometidos, o formato dos textos, as cores preferidas e mais uma infinidade de detalhes do comportamento dos usuários são registrados e inseridos na extensa base de dados gerando projeções assertivas sobre o comportamento humano atual e futuro. Outro aspecto ressaltado por Zuboff é que as plataformas tecnológicas, em geral, captam mais dados do que o necessário para a dinâmica de seus modelos de negócio, ou seja, para melhorar produtos e serviços, e os utilizam para prever o comportamento de grupos específicos (“excedente comportamental”).
Esses processos de persuasão ocorrem em níveis invisíveis, sem conhecimento e/ou consentimento dos usuários, que desconhecem o potencial e a abrangência das previsões dos algoritmos de IA; num nível mais avançado, essas previsões envolvem personalidade, emoções, orientação sexual e política, ou seja, um conjunto de informações que em tese não era a intenção do usuário revelar. As fotos postadas nas redes sociais, por exemplo, geram os chamados “sinais de previsão” tais como os músculos e a simetria da face, informações utilizadas no treinamento de algoritmos de IA de reconhecimento de imagem.
A escala atual de geração, armazenamento e mineração de dados, associada aos modelos assertivos de personalização, é um dos elementos-chave da mudança de natureza dos atuais mecanismos de persuasão. Comparando os modelos tradicionais com os de algoritmos de IA, é possível detectar a extensão dessa mudança: 1) de mensagens elaboradas com base em conhecimento do público-alvo superficial e limitado, a partir do entendimento das características generalistas das categorias, para mensagens elaboradas com base em conhecimento profundo e detalhado/minucioso do público-alvo, hipersegmentação e personalização; 2) de correlações entre variáveis determinadas pelo desenvolvedor do sistema para correlações entre variáveis determinadas automaticamente com base nos dados; 3) de limitados recursos para associar comportamentos offline e online para capacidade de capturar e armazenar dados de comportamento off-line e agregá-los aos dados capturados online formando uma base de dados única, mais completa, mais diversificada, mais precisa; 4) de mecanismos de persuasão visíveis (propaganda na mídia) e relativamente visíveis (propaganda na internet) para mecanismos de persuasão invisíveis; 5) de baixo grau de assertividade para alto grau de assertividade; 6) de instrumentos de medição/verificação dos resultados limitados para instrumentos de medição/verificação dos resultados precisos; 7) de capacidade preditiva limitada à tendências futuras para capacidade preditiva de cenários futuros e quando vão acontecer com grau de acurácia média em torno de 80-90%; e 8) de reduzida capacidade de distorcer imagem e voz para enorme capacidade de distorcer imagem e voz, as Deep Fakes.
Como sempre, cabe à sociedade encontrar um ponto de equilíbrio entre os benefícios e as ameaças da IA. No caso, entre a proteção aos direitos humanos civilizatórios e a inovação e o avanço tecnológico, e entre a curadoria da informação e a manipulação do consumo, do acesso à informação e dos processos democráticos.
*Dora Kaufman professora do TIDD PUC – SP, pós-doutora COPPE-UFRJ e TIDD PUC-SP, doutora ECA-USP com período na Université Paris – Sorbonne IV. Autora dos livros “O Despertar de Gulliver: os desafios das empresas nas redes digitais”, e “A inteligência artificial irá suplantar a inteligência humana?”. Professora convidada da Fundação Dom Cabral
Você precisa fazer login para comentar.