Arquivo da tag: Evolução humana

Por que somos a única espécie humana do planeta (El País)

brasil.elpais.com

Nuño Domínguez, 04 jul 2021 – 12:48 BRT

Três grandes descobertas feitas nos últimos dias nos obrigam a repensar as origens da humanidade


Três descobertas nos últimos dias acabam de mudar o que sabíamos sobre a origem da raça humana e da nossa própria espécie, Homo sapiens. Talvez − dizem alguns especialistas − precisemos abandonar esse conceito para nos referir a nós mesmos, pois as novas descobertas sugerem que somos uma criatura de Frankenstein com partes de outras espécies humanas com as quais, não muito tempo atrás, compartilhamos planeta, sexo e filhos.

As descobertas da última semana indicam que cerca de 200.000 anos atrás havia até oito espécies ou grupos humanos diferentes. Todos faziam parte do gênero Homo, que nos engloba. Os recém-chegados apresentam uma interessante mistura de traços primitivos − arcos enormes acima das sobrancelhas, cabeça achatada − e modernos. O “homem dragão” da China tinha uma capacidade craniana tão grande quanto a dos humanos atuais, ou até superior. O Homo de Nesher Ramla, encontrado em Israel, pode ter sido o que deu origem aos neandertais e aos denisovanos que ocuparam, respectivamente, a Europa e a Ásia e com quem nossa espécie teve repetidos encontros sexuais, dos quais nasceram filhos mestiços que foram aceitos em suas respectivas tribos como mais um.

Agora sabemos que devido àqueles cruzamentos todas as pessoas de fora da África têm 3% de DNA neandertal, ou que os habitantes do Tibete têm genes transmitidos pelos denisovanos para poder viver em grandes altitudes. Algo muito mais inquietante foi revelado pela análise genética das populações atuais da Nova Guiné: é possível que os denisovanos − um ramo irmão dos neandertais − tenham vivido até apenas 15.000 anos atrás, uma distância muito pequena em termos evolutivos.

A terceira grande descoberta dos últimos dias é quase detetivesca. Na análise de DNA conservado no solo da caverna de Denisova, na Sibéria, foi encontrado material genético dos humanos autóctones, os denisovanos, de neandertais e de sapiens em períodos tão próximos que poderiam até se sobrepor. Lá foram encontrados há três anos os restos do primeiro híbrido entre espécies humanas que se conhece: uma menina filha de uma neandertal e de um denisovano.

O paleoantropólogo Florent Detroit descobriu para a ciência outra dessas novas espécies humanas: o Homo luzonensis, que viveu em uma ilha das Filipinas há 67.000 anos e que apresenta uma estranha mistura de traços que poderiam ser o resultado de sua longa evolução em isolamento durante mais de um milhão de anos. É um pouco parecido com o que experimentou seu contemporâneo Homo floresiensis, ou “homem de Flores”, um humano de um metro e meio que viveu em uma ilha indonésia. Tinha um cérebro do tamanho do de um chimpanzé, mas se for aplicado a ele o teste de inteligência mais usado pelos paleoantropólogos, podemos dizer que era tão avançado quanto o sapiens, pois suas ferramentas de pedra eram igualmente evoluídas.

Imagem radiográfica da mandíbula do ‘Homo’ de Nesher Ramla descoberta em Israel.
Imagem radiográfica da mandíbula do ‘Homo’ de Nesher Ramla descoberta em Israel.Ariel Pokhojaev

A esses dois habitantes insulares se soma o Homo erectus, o primeiro Homo viajante que saiu da África há cerca de dois milhões de anos. Ele conquistou a Ásia e lá viveu até pelo menos 100.000 anos atrás. O oitavo passageiro desta história seria o Homo daliensis, um fóssil encontrado na China com uma mistura de erectus e sapiens, embora seja possível que acabe sendo incluído na nova linhagem do Homo longi.

“Não me surpreende que houvesse várias espécies humanas vivas ao mesmo tempo”, afirma Detroit. “Se considerarmos o último período geológico que começou há 2,5 milhões de anos, sempre houve diferentes gêneros e espécies de hominídeos compartilhando o planeta. A grande exceção é a atualidade, nunca havia existido apenas uma espécie humana na Terra”, reconhece. Por que nós, os sapiens, somos os únicos sobreviventes?

Para Juan Luis Arsuaga, paleoantropólogo do sítio arqueológico de Atapuerca, no norte da Espanha, a resposta é que “somos uma espécie hipersocial, os únicos capazes de construir laços além do parentesco, ao contrário dos demais mamíferos”. “Compartilhamos ficções consensuais como pátria, religião, língua, times de futebol; e chegamos a sacrificar muitas coisas por elas”, assinala. Nem mesmo a espécie humana mais próxima de nós, os neandertais, que criavam adornos, símbolos e arte, tinham esse comportamento. Arsuaga resume assim: “Os neandertais não tinham bandeira”. Por razões ainda desconhecidas, essa espécie se extinguiu há cerca de 40.000 anos.

Os sapiens não eram “estritamente superiores” a seus congêneres, opina Antonio Rosas, paleoantropólogo do Conselho Superior de Pesquisas Científicas da Espanha. “Agora sabemos que somos o resultado de hibridações com outras espécies, e o conjunto de características que temos foi o perfeito para aquele momento”, explica. Uma possível vantagem adicional é que os grupos sapiens eram mais numerosos que os neandertais, o que significa menos endogamia e melhor saúde das populações.

Detroit acredita que parte da explicação está na própria essência da nossa espécie sapiens, “sábio” em latim. “Temos um cérebro enorme que devemos alimentar, por isso precisamos de muitos recursos e, portanto, de muito território”, assinala. “O Homo sapiens teve uma expansão demográfica enorme e é bem possível que a disputa pelo território fosse muito dura para as demais espécies”, acrescenta.

María Martinón-Torres, diretora do Centro Nacional de Pesquisa sobre Evolução Humana, com sede em Burgos, acredita que o segredo seja a “hiperadaptabilidade”. “A nossa é uma espécie invasiva, não necessariamente mal-intencionada, mas somos como o cavalo de Átila da evolução”, compara. “Por onde passamos, e com nosso estilo de vida, diminui a diversidade biológica, incluindo a humana. Somos uma das forças ecológicas de maior impacto do planeta e essa história, a nossa, começou a se delinear no Pleistoceno [o período que começou há 2,5 milhões de anos e terminou há cerca de 10.000, quando o sapiens já era a única espécie humana que restava no planeta]”, acrescenta.

As descobertas dos últimos dias voltam a expor um problema crescente: os cientistas estão denominando cada vez mais espécies humanas. Tem sentido fazer isso? Para o paleoantropólogo israelense Israel Hershkovitz, autor da descoberta do Homo de Nesher Ramla, não. “Há muitas espécies”, afirma. “A definição clássica diz que duas espécies diferentes não podem ter filhos férteis. O DNA nos diz que sapiens, neandertais e denisovanos tiveram, por isso deveriam ser considerados a mesma espécie”, aponta.

“Se somos sapiens, então essas espécies que são nossos ancestrais por meio da miscigenação também são”, reforça João Zilhão, professor da Instituição Catalã de Pesquisa e Estudos Avançados na Universidade de Barcelona.

Essa questão é objeto de discórdia entre especialistas. “A hibridação é muito comum em espécies atuais, especialmente no mundo vegetal”, lembra José María Bermúdez de Castro, codiretor das pesquisas em Atapuerca. “Pode-se matizar o conceito de espécie, mas acho que não podemos abandoná-lo, porque é muito útil para podermos nos entender”, ressalta.

Escavações no sítio arqueológico de Nesher Ramla.
Escavações no sítio arqueológico de Nesher Ramla. Zaidner

Muitas nuances entram em jogo nessa questão. A evidente diferença entre sapiens e neandertais não é a mesma coisa que a identidade como espécie do Homo luzonensis, do qual só conhecemos alguns poucos ossos e dentes, ou dos denisovanos, dos quais a maioria das informações vem do DNA extraído de fósseis minúsculos.

“Curiosamente, apesar dos cruzamentos frequentes, tanto os sapiens como os neandertais foram espécies perfeitamente reconhecíveis e distinguíveis até o fim”, destaca Martinón-Torres. “Os traços do neandertal tardio são mais marcados que os dos anteriores, em vez de terem se apagado como consequência do cruzamento. Houve trocas biológicas, e talvez culturais também, mas nenhuma das espécies deixou de ser ela, distintiva, reconhecível em sua biologia, seu aspecto, suas adaptações específicas, seu nicho ecológico ao longo de sua história evolutiva. Acredito que esse é o melhor exemplo de que a hibridação não colide necessariamente com o conceito de espécie”, conclui. Seu colega Hershkovitz alerta que o debate continuará: “Estamos fazendo escavações em outras três cavernas em Israel onde encontramos fósseis humanos que nos darão uma nova perspectiva sobre a evolução humana”.

Greater than the sum of our parts: The evolution of collective intelligence (EurekaAlert!)

News Release 15-Jun-2021

University of Cambridge

Research News

The period preceding the emergence of behaviourally modern humans was characterised by dramatic climatic and environmental variability – it is these pressures, occurring over hundreds of thousands of years that shaped human evolution.

New research published today in the Cambridge Archaeological Journal proposes a new theory of human cognitive evolution entitled ‘Complementary Cognition’ which suggests that in adapting to dramatic environmental and climactic variabilities our ancestors evolved to specialise in different, but complementary, ways of thinking.

Lead author Dr Helen Taylor, Research Associate at the University of Strathclyde and Affiliated Scholar at the McDonald Institute for Archaeological Research, University of Cambridge, explained: “This system of complementary cognition functions in a way that is similar to evolution at the genetic level but instead of underlying physical adaptation, may underlay our species’ immense ability to create behavioural, cultural and technological adaptations. It provides insights into the evolution of uniquely human adaptations like language suggesting that this evolved in concert with specialisation in human cognition.”

The theory of complementary cognition proposes that our species cooperatively adapt and evolve culturally through a system of collective cognitive search alongside genetic search which enables phenotypic adaptation (Darwin’s theory of evolution through natural selection can be interpreted as a ‘search’ process) and cognitive search which enables behavioural adaptation.

Dr Taylor continued, “Each of these search systems is essentially a way of adapting using a mixture of building on and exploiting past solutions and exploring to update them; as a consequence, we see evolution in those solutions over time. This is the first study to explore the notion that individual members of our species are neurocognitively specialised in complementary cognitive search strategies.”

Complementary cognition could lie at the core of explaining the exceptional level of cultural adaptation in our species and provides an explanatory framework for the emergence of language. Language can be viewed as evolving both as a means of facilitating cooperative search and as an inheritance mechanism for sharing the more complex results of complementary cognitive search. Language is viewed as an integral part of the system of complementary cognition.

The theory of complementary cognition brings together observations from disparate disciplines, showing that they can be viewed as various faces of the same underlying phenomenon.

Dr Taylor continued: “For example, a form of cognition currently viewed as a disorder, dyslexia, is shown to be a neurocognitive specialisation whose nature in turn predicts that our species evolved in a highly variable environment. This concurs with the conclusions of many other disciplines including palaeoarchaeological evidence confirming that the crucible of our species’ evolution was highly variable.”

Nick Posford, CEO, British Dyslexia Association said, “As the leading charity for dyslexia, we welcome Dr Helen Taylor’s ground-breaking research on the evolution of complementary cognition. Whilst our current education and work environments are often not designed to make the most of dyslexia-associated thinking, we hope this research provides a starting point for further exploration of the economic, cultural and social benefits the whole of society can gain from the unique abilities of people with dyslexia.”

At the same time, this may also provide insights into understanding the kind of cumulative cultural evolution seen in our species. Specialisation in complementary search strategies and cooperatively adapting would have vastly increased the ability of human groups to produce adaptive knowledge, enabling us to continually adapt to highly variable conditions. But in periods of greater stability and abundance when adaptive knowledge did not become obsolete at such a rate, it would have instead accumulated, and as such Complementary Cognition may also be a key factor in explaining cumulative cultural evolution.

Complementary cognition has enabled us to adapt to different environments, and may be at the heart of our species’ success, enabling us to adapt much faster and more effectively than any other highly complex organism. However, this may also be our species’ greatest vulnerability.

Dr Taylor concluded: “The impact of human activity on the environment is the most pressing and stark example of this. The challenge of collaborating and cooperatively adapting at scale creates many difficulties and we may have unwittingly put in place a number of cultural systems and practices, particularly in education, which are undermining our ability to adapt. These self-imposed limitations disrupt our complementary cognitive search capability and may restrict our capacity to find and act upon innovative and creative solutions.”

“Complementary cognition should be seen as a starting point in exploring a rich area of human evolution and as a valuable tool in helping to create an adaptive and sustainable society. Our species may owe our spectacular technological and cultural achievements to neurocognitive specialisation and cooperative cognitive search, but our adaptive success so far may belie the importance of attaining an equilibrium of approaches. If this system becomes maladjusted, it can quickly lead to equally spectacular failures to adapt – and to survive, it is critical that this system be explored and understood further.”

Humans were apex predators for two million years (Eureka Alert!)

News Release 5-Apr-2021

What did our ancestors eat during the stone age? Mostly meat

Tel-Aviv University

IMAGE
IMAGE: Human Brain. Credit: Dr. Miki Ben Dor

Researchers at Tel Aviv University were able to reconstruct the nutrition of stone age humans. In a paper published in the Yearbook of the American Physical Anthropology Association, Dr. Miki Ben-Dor and Prof. Ran Barkai of the Jacob M. Alkov Department of Archaeology at Tel Aviv University, together with Raphael Sirtoli of Portugal, show that humans were an apex predator for about two million years. Only the extinction of larger animals (megafauna) in various parts of the world, and the decline of animal food sources toward the end of the stone age, led humans to gradually increase the vegetable element in their nutrition, until finally they had no choice but to domesticate both plants and animals – and became farmers.

“So far, attempts to reconstruct the diet of stone-age humans were mostly based on comparisons to 20th century hunter-gatherer societies,” explains Dr. Ben-Dor. “This comparison is futile, however, because two million years ago hunter-gatherer societies could hunt and consume elephants and other large animals – while today’s hunter gatherers do not have access to such bounty. The entire ecosystem has changed, and conditions cannot be compared. We decided to use other methods to reconstruct the diet of stone-age humans: to examine the memory preserved in our own bodies, our metabolism, genetics and physical build. Human behavior changes rapidly, but evolution is slow. The body remembers.”

In a process unprecedented in its extent, Dr. Ben-Dor and his colleagues collected about 25 lines of evidence from about 400 scientific papers from different scientific disciplines, dealing with the focal question: Were stone-age humans specialized carnivores or were they generalist omnivores? Most evidence was found in research on current biology, namely genetics, metabolism, physiology and morphology.

“One prominent example is the acidity of the human stomach,” says Dr. Ben-Dor. “The acidity in our stomach is high when compared to omnivores and even to other predators. Producing and maintaining strong acidity require large amounts of energy, and its existence is evidence for consuming animal products. Strong acidity provides protection from harmful bacteria found in meat, and prehistoric humans, hunting large animals whose meat sufficed for days or even weeks, often consumed old meat containing large quantities of bacteria, and thus needed to maintain a high level of acidity. Another indication of being predators is the structure of the fat cells in our bodies. In the bodies of omnivores, fat is stored in a relatively small number of large fat cells, while in predators, including humans, it’s the other way around: we have a much larger number of smaller fat cells. Significant evidence for the evolution of humans as predators has also been found in our genome. For example, geneticists have concluded that “areas of the human genome were closed off to enable a fat-rich diet, while in chimpanzees, areas of the genome were opened to enable a sugar-rich diet.”

Evidence from human biology was supplemented by archaeological evidence. For instance, research on stable isotopes in the bones of prehistoric humans, as well as hunting practices unique to humans, show that humans specialized in hunting large and medium-sized animals with high fat content. Comparing humans to large social predators of today, all of whom hunt large animals and obtain more than 70% of their energy from animal sources, reinforced the conclusion that humans specialized in hunting large animals and were in fact hypercarnivores.

“Hunting large animals is not an afternoon hobby,” says Dr. Ben-Dor. “It requires a great deal of knowledge, and lions and hyenas attain these abilities after long years of learning. Clearly, the remains of large animals found in countless archaeological sites are the result of humans’ high expertise as hunters of large animals. Many researchers who study the extinction of the large animals agree that hunting by humans played a major role in this extinction – and there is no better proof of humans’ specialization in hunting large animals. Most probably, like in current-day predators, hunting itself was a focal human activity throughout most of human evolution. Other archaeological evidence – like the fact that specialized tools for obtaining and processing vegetable foods only appeared in the later stages of human evolution – also supports the centrality of large animals in the human diet, throughout most of human history.”

The multidisciplinary reconstruction conducted by TAU researchers for almost a decade proposes a complete change of paradigm in the understanding of human evolution. Contrary to the widespread hypothesis that humans owe their evolution and survival to their dietary flexibility, which allowed them to combine the hunting of animals with vegetable foods, the picture emerging here is of humans evolving mostly as predators of large animals.

“Archaeological evidence does not overlook the fact that stone-age humans also consumed plants,” adds Dr. Ben-Dor. “But according to the findings of this study plants only became a major component of the human diet toward the end of the era.”

Evidence of genetic changes and the appearance of unique stone tools for processing plants led the researchers to conclude that, starting about 85,000 years ago in Africa, and about 40,000 years ago in Europe and Asia, a gradual rise occurred in the consumption of plant foods as well as dietary diversity – in accordance with varying ecological conditions. This rise was accompanied by an increase in the local uniqueness of the stone tool culture, which is similar to the diversity of material cultures in 20th-century hunter-gatherer societies. In contrast, during the two million years when, according to the researchers, humans were apex predators, long periods of similarity and continuity were observed in stone tools, regardless of local ecological conditions.

“Our study addresses a very great current controversy – both scientific and non-scientific,” says Prof. Barkai. “For many people today, the Paleolithic diet is a critical issue, not only with regard to the past, but also concerning the present and future. It is hard to convince a devout vegetarian that his/her ancestors were not vegetarians, and people tend to confuse personal beliefs with scientific reality. Our study is both multidisciplinary and interdisciplinary. We propose a picture that is unprecedented in its inclusiveness and breadth, which clearly shows that humans were initially apex predators, who specialized in hunting large animals. As Darwin discovered, the adaptation of species to obtaining and digesting their food is the main source of evolutionary changes, and thus the claim that humans were apex predators throughout most of their development may provide a broad basis for fundamental insights on the biological and cultural evolution of humans.”

Israeli Archaeologists Present Groundbreaking Universal Theory of Human Evolution (Haaretz)

Tel Aviv University archaeologists Miki Ben-Dor and Ran Barkai proffer novel hypothesis, showing how the greed of Homo erectus set us careening down an anomalous evolutionary path

Ruth Schuster, Feb. 25, 2021

Why the human brain evolved as it did never has been plausibly explained. Apparently, not since the first life-form billions of years ago did a single species gain dominance over all others – until we came along. Now, in a groundbreaking paper, two Israeli researchers propose that our anomalous evolution was propelled by the very mass extinctions we helped cause. Or: As we sawed off the culinary branches from which we swung, we had to get ever more inventive in order to survive.

As ambling, slow-to-reproduce large animals diminished and gradually went extinct, we were forced to resort to smaller, nimbler animals that flee as a strategy to escape predation. To catch them, we had to get smarter, nimbler and faster, according to the universal theory of human evolution proposed by researchers Miki Ben-Dor and Prof. Ran Barkai of Tel Aviv University, in a paper published in the journal Quaternary.

In fact, the great African megafauna began to decline about 4.6 million years ago. But our story begins with Homo habilis, which lived about 2.6 million years ago and apparently used crude stone tools to help it eat flesh, and with Homo erectus, which thronged Africa and expanded to Eurasia about 2 million years ago. The thing is, erectus wasn’t an omnivore: it was a carnivore, Ben-Dor explains to Haaretz.

“Eighty percent of mammals are omnivores but still specialize in a narrow food range. If anything, it seems Homo erectus was a hyper-carnivore,” he observes.

And in the last couple of million years, our brains grew threefold to a maximum capacity of about 1,500 cranial capacity, a size achieved about 300,000 years ago. We also gradually but consistently ramped up in technology and culture – until the Neolithic revolution and advent of the sedentary lifestyle, when our brains shrank to about 1,400 to 1,300cc, but more on that anomaly later.

The hypothesis suggested by Ben-Dor and Barkai – that we ate our way to our present physical, cultural and ecological state – is an original unifying explanation for the behavioral, physiological and cultural evolution of the human species.

Out of chaos

Evolution is chaotic. Charles Darwin came up with the theory of the survival of the fittest, and nobody has a better suggestion yet, but mutations aren’t “planned.” Bodies aren’t “designed,” if we leave genetic engineering out of it. The point is, evolution isn’t linear but chaotic, and that should theoretically apply to humans too.

Hence, it is strange that certain changes in the course of millions of years of human history, including the expansion of our brain, tool manufacture techniques and use of fire, for example, were uncharacteristically progressive, say Ben-Dor and Barkai.

“Uncharacteristically progressive” means that certain traits such as brain size, or cultural developments such as fire usage, evolved in one direction over a long time, in the direction of escalation. That isn’t what chaos is expected to produce over vast spans of time, Barkai explains to Haaretz: it is bizarre. Very few parameters behave like that.

So, their discovery of correlation between contraction of the average weight of African animals, the extinction of megafauna and the development of the human brain is intriguing.

From mammoth marrow to joint of rat

To be clear, just this month a new paper posited that the late Quaternary extinction of megafauna, in the last few tens of thousands of years, wasn’t entirely the fault of humanity. In North America specifically, it was due primarily to climate change, with the late-arriving humans apparently providing the coup de grâce to some species.

In the Old World, however, a human role is clearer. African megafauna apparently began to decline 4.6 million years ago, but during the Pleistocene (2.6 million to 11,600 years ago) the size of African animals trended sharply down, in what the authors term an abrupt reversal from a continuous growth trend of 65 million years (i.e., since the dinosaurs almost died out).

When Homo erectus the carnivore began to roam Africa around 2 million years ago, land mammals averaged nearly 500 kilograms. Barkai’s team and others have demonstrated that hominins ate elephants and large animals when they could. In fact, originally Africa had six elephant species (today there are two: the bush elephant and forest elephant). By the end of the Pleistocene, by which time all hominins other than modern humans were extinct too, that average weight of the African animal had shrunk by more than 90 percent.

And during the Pleistocene, as the African animals shrank, the Homo genus grew taller and more gracile, and our stone tool technology improved (which in no way diminished our affection for archaic implements like the hand ax or chopper, both of which remained in use for more than a million years, even as more sophisticated technologies were developed).

If we started some 3.3 million years ago with large, crude stone hammers that may have been used to bang big animals on the head or break bones to get at the marrow, over the epochs we invented the spear for remote slaughter. By about 80,000 years ago, the bow and arrow was making its appearance, which was more suitable for bringing down small fry like small deer and birds. Over a million years ago, we began to use fire, and later achieved better control of it, meaning the ability to ignite it at will. Later we domesticated the dog from the wolf, and it would help us hunt smaller, fleet animals.

Why did the earliest humans hunt large animals anyway? Wouldn’t a peeved elephant be more dangerous than a rat? Arguably, but catching one elephant is easier than catching a large number of rats. And megafauna had more fat.

A modern human can only derive up to about 50 percent of calories from lean meat (protein): past a certain point, our livers can’t digest more protein. We need energy from carbs or fat, but before developing agriculture about 10,000 years ago, a key source of calories had to be animal fat.

Big animals have a lot of fat. Small animals don’t. In Africa and Europe, and in Israel too, the researchers found a significant decline in the prevalence of animals weighing over 200 kilograms correlated to an increase in the volume of the human brain. Thus, Ben-Dor and Barkai deduce that the declining availability of large prey seems to have been a key element in the natural selection from Homo erectus onward. Catching one elephant is more efficient than catching 1,000 rabbits, but if we must catch 1,000 rabbits, improved cunning, planning and tools are in order.

Say it with fat

Our changing hunting habits would have had cultural impacts too, Ben-Dor and Barkai posit. “Cultural evolution in archaeology usually refers to objects, such as stone tools,” Ben-Dor tells Haaretz. But cultural evolution also refers to learned behavior, such as our choice of which animals to hunt, and how.

Thus, they posit, our hunting conundrum may have also been a key element to that enigmatic human characteristic: complex language. When language began, with what ancestor of Homo sapiens, if any before us, is hotly debated.

Ben-Dor, an economist by training prior to obtaining a Ph.D. in archaeology, believes it began early. “We just need to follow the money. When speaking of evolution, one must follow the energy. Language is energetically costly. Speaking requires devotion of part of the brain, which is costly. Our brain consumes huge amounts of energy. It’s an investment, and language has to produce enough benefit to make it worthwhile. What did language bring us? It had to be more energetically efficient hunting.”

Domestication of the dog also requires resources and, therefore, also had to bring sufficient compensation in the form of more efficient hunting of smaller animals, he points out. That may help explain the fact that Neolithic humans not only embraced the dog but ate it too, going by archaeological evidence of butchered dogs.

At the end of the day, wherever we went, humans devastated the local ecologies, given enough time.

There is a lot of thinking about the Neolithic agricultural revolution. Some think grain farming was driven by the desire to make beer. Given residue analysis indicating that it’s been around for over 10,000 years, that theory isn’t as far-fetched as one might think. Ben-Dor and Barkai suggest that once we could grow our own food and husband herbivores, the megafauna almost entirely gone, hunting for them became too energy-costly. So we had to use our large brains to develop agriculture.

And as the hunter-gathering lifestyle gave way to permanent settlement, our brain size decreased.

Note, Ben-Dor adds, that the brains of wolves which have to hunt to survive are larger than the brain of the domesticated wolf, i.e., dogs. We did promise more on that. That was it. Also: The chimpanzee brain has remained stable for 7 million years, since the split with the Homo line, Barkai points out.

“Why does any of this matter?” Ben-Dor asks. “People think humans reached this condition because it was ‘meant to be.’ But in the Earth’s 4.5 billion years, there have been billions of species. They rose and fell. What’s the probability that we would take over the world? It’s an accident of nature. It never happened before that one species achieved dominance over all, and now it’s all over. How did that happen? This is the answer: A non-carnivore entered the niche of carnivore, and ate out its niche. We can’t eat that much protein: we need fat too. Because we needed the fat, we began with the big animals. We hunted the prime adult animals which have more fat than the kiddies and the old. We wiped out the prime adults who were crucial to survival of species. Because of our need for fat, we wiped out the animals we depended on. And this required us to keep getting smarter and smarter, and thus we took over the world.”